Jurnal Ilmiah Wahana Pendidikan, November 2025, 11 (11.D), 423-429

DOI: https://jurnal.peneliti.net/index.php/JIWP/article/view/13177

p-ISSN: 2622-8327 e-ISSN: 2089-5364

Accredited by Directorate General of Strengthening for Research and Development

Available online at https://jurnal.peneliti.net/index.php/JIWP

Analisis Model AIGP untuk Dinamika Investasi Menggunakan Sistem Persamaan Diferensial

Muhammad Isbar Pratama¹

¹Jurusan Matematika, FMIPA, Universitas Negeri Makassar

Abstract

Received: 05 Oktober 2025 Revised: 17 Oktober 2025 Accepted: 28 Oktober 2025 Penelitian ini mengembangkan model dinamika keuangan AIGP (Allocated Capital, Investment, Gain, and Portfolio) yang merepresentasikan aliran modal dalam sistem investasi. Model ini dirancang untuk menganalisis perubahan alokasi modal, aktivitas investasi, pertumbuhan keuntungan, dan dinamika portofolio menggunakan pendekatan sistem dinamik. Dengan memanfaatkan sistem persamaan diferensial, dilakukan analisis kestabilan terhadap titik ekuilibrium dan penghitungan bilangan reproduksi dasar untuk mengetahui potensi pertumbuhan sistem investasi. Simulasi numerik dilakukan dengan berbagai parameter untuk memahami sensitivitas sistem terhadap perubahan nilai input. Hasil penelitian ini diharapkan dapat memberikan kerangka kerja matematis yang berguna dalam pengambilan keputusan investasi berbasis analisis dinamik.

Keywords:

Model AIGP, Investasi, Sistem Diferensial, Analisis Kestabilan,

Pemodelan Matematika

(*) Corresponding Author:

isbarpratama@unm.ac.id

How to Cite: Pratama, M. (2025). Pemodelan Investasi Dinamis melalui Model AIGP: Evaluasi Stabilitas Sistem dan Perilaku Modal. *Jurnal Ilmiah Wahana Pendidikan*, *11*(11.D), 423-429. Retrieved from https://jurnal.peneliti.net/index.php/JIWP/article/view/13177.

PENDAHULUAN

Pengelolaan keuangan individu atau organisasi merupakan aspek penting dalam mendukung stabilitas dan pertumbuhan ekonomi jangka panjang. Salah satu pendekatan untuk memahami dinamika keuangan secara komprehensif adalah melalui pemodelan matematika. Model dinamika sistem memberikan kerangka kerja analitis yang memungkinkan kita untuk menggambarkan perubahan dalam variabel keuangan, seperti modal, investasi, keuntungan, dan portofolio, dari waktu ke waktu. Dalam konteks ini, model AIGP (*Allocated capital, Investment, Portofolio, and Profit*) menawarkan pendekatan komprehensif untuk menganalisis perilaku sistem keuangan secara dinamis.

Model AIGP memiliki struktur yang serupa dengan model epidemiologi dalam hal alur transisi antar kompartemen. Pendekatan ini memudahkan analisis terhadap fenomena kompleks seperti ketergantungan terhadap aktivitas investasi atau perilaku kompulsif dalam pengelolaan modal. Sebagaimana pada studi oleh Ulfy M. Syam dkk. (2023) yang menerapkan metode pendekatan ilmiah dalam menganalisis pengaruh terapi bekam terhadap kadar asam urat, pemodelan matematis juga dapat digunakan untuk mengevaluasi efektivitas intervensi atau kebijakan dalam sistem keuangan.

Model matematis mampu memberikan visualisasi dan simulasi perilaku sistem berdasarkan parameter yang terukur. Dengan pendekatan ini, kita dapat mengidentifikasi titik-titik kestabilan, bilangan reproduksi dasar (basic

reproduction number), serta merancang strategi optimal dalam alokasi modal dan manajemen portofolio untuk menghindari kondisi "endemik" investasi yang tidak terkendali. Penelitian ini bertujuan untuk mengembangkan model AIGP dan melakukan analisis kestabilan serta simulasi numerik guna memahami lebih dalam dinamika investasi aktif dalam sistem keuangan.

"Pendekatan kuantitatif dalam bentuk model matematis memberikan gambaran yang lebih terstruktur mengenai hubungan sebab-akibat dalam sistem yang kompleks" (Syam et al., 2023).

METODE

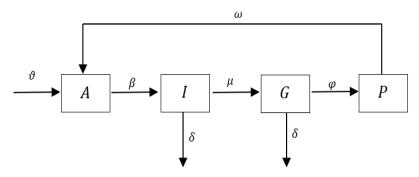
Penelitian ini menggunakan pendekatan pemodelan matematika berbasis sistem dinamik untuk menganalisis aliran modal dalam kegiatan investasi. Model AIGP terdiri dari empat kompartemen utama yang saling berinteraksi:

- A (Allocated Capital): modal yang disiapkan untuk investasi.
- I (Investment): bagian dari modal yang telah dialokasikan menjadi investasi aktif.
- G (Gain): keuntungan yang diperoleh dari aktivitas investasi.
- P (Portfolio): portofolio atau aset aktif yang terbentuk dari proses investasi.

Model ini diformulasikan melalui sistem persamaan diferensial deterministik sebagai berikut:

Perubahan masing-masing kompartemen dimodelkan dengan laju pertambahan dan pengurangan yang bergantung pada parameter konversi, alokasi, kerugian, serta produktivitas investasi. Analisis dilakukan terhadap titik ekuilibrium sistem, baik bebas aktivitas investasi maupun kondisi endemik di mana investasi aktif dan keuntungan terus berputar dalam sistem. Untuk mengevaluasi kestabilan lokal sistem, dihitung matriks Jacobian dari sistem persamaan dan diperoleh nilai eigen untuk masing-masing titik tetap.

Bilangan reproduksi dasar dihitung menggunakan next generation matrix method untuk menilai apakah sistem akan berkembang ($R_0 > 1$), stagnan ($R_0 = 1$), atau menurun ($R_0 < 1$).


Simulasi numerik dilakukan dengan parameter yang telah ditentukan guna memvisualisasikan perilaku sistem dan mengamati sensitivitas terhadap perubahan variabel awal.

Pendekatan ini bertujuan untuk memetakan kompleksitas sistem investasi dalam suatu kerangka matematis yang bisa dianalisis secara kuantitatif dan komprehensif.

HASIL DAN PEMBAHASAN

Model AIGP untuk investasi

Model dinamika investasi aktif ini dibagi ke dalam empat kompartemen, yaitu Modal Dialokasikan (A), Investasi Aktif (I), pertumbuhan portofolio (G), dan profit (P). Individu dalam kelas investasi aktif dapat mendorong perkembangan lebih lanjut menuju keuntungan dan perilaku kompulsif. Perubahan yang terjadi dalam setiap kompartemen populasi modal dalam model dinamika investasi ini dapat diilustrasikan melalui Gambar 3.

Gambar 1. Skema Model AIGP Investasi Aktif.

Definisi variabel dan parameter pada model dinamika investasi aktif disajikan dalam Tabel 1.

Tabel 1 Definisi Variabel/Parameter

Tabel 1. Definish variabel/Parameter				
bel/Parameter	Definisi			
A	Modal yang dialokasikan untuk investasi			
I	Investasi aktif (modal yang sudah			
	diinvestasikan)			
G	Keuntungan investasi yang dihasilkan			
P	Portofolio atau aset aktif yang dikelola			
ϑ	Inflow modal tambahan dari luar			
ω	Laju konversi portofolio menjadi modal			
	baru			
β	Laju alokasi modal ke investasi			
δ	Laju kehilangan modal/investasi karena			
	risiko atau biaya			
μ	Laju keuntungan dari investasi ke			
	portofolio			
arphi	Laju penguatan atau produktivitas			
	portofolio dalam menghasilkan			
	keuntungan			

Berdasarkan skema alur modal pada Gambar 3, laju perubahan jumlah modal yang dialokasikan, aktivitas investasi, perolehan keuntungan, dan perilaku kompulsif terhadap waktu dalam model matematika dinamika investasi dapat diinterpretasikan sebagai berikut:

erpretasikan sebagai berikut:
$$\frac{dA}{dt} = \vartheta + \omega P - \beta A \tag{1}$$
$$\frac{dI}{dt} = \beta A - (\delta + \mu)I \tag{2}$$
$$\frac{dG}{dt} = \mu I - (\delta + \varphi)G \tag{3}$$
$$\frac{dP}{dt} = \varphi G - \omega P \tag{4}$$

$$\frac{dG}{dt} = \mu I - (\delta + \varphi)G\tag{3}$$

$$\frac{dP}{dP} = \varphi G - \omega P \tag{4}$$

Analsisi model AIGP

Analisis Kestabilan

Berdasarkan Persamaan (1) – (4), analisis kestabilan dilakukan untuk menentukan titik ekuilibrium bebas adiksi dan titik ekuilibrium endemik. Dalam konteks model ini, istilah endemik merujuk pada kondisi di mana aktivitas investasi aktif, keuntungan, dan perilaku kompulsif bertahan secara stabil dalam sistem Untuk menentukan kedua titik ekuilibrium tersebut, setiap persamaan dalam Persamaan (1)–(4) harus disamakan dengan nol, yaitu $\frac{dA}{dt} = 0$, $\frac{dI}{dt} = 0$, $\frac{dG}{dt} = 0$, $\frac{dP}{dt} = 0$ 0 sehingga diperoleh:

$$0 = \vartheta + \omega P - \beta A \tag{5}$$

$$0 = \beta A - (\delta + \mu)I \tag{6}$$

$$0 = \mu I - (\delta + \varphi)G$$

$$0 = \varphi G - \omega P$$
(7)
(8)

$$0 = \varphi G - \omega P \tag{8}$$

Dari (5) – (8) dengan $A \neq 0, I \neq 0, G \neq 0, P \neq 0$ maka diperoleh titik kestabilan dari model AIGP untuk investasi adalah:

$$K_{e} = (A, I, G, P) = \begin{pmatrix} \frac{(\delta + \mu)\vartheta(\delta + \varphi)}{\delta(\delta + \mu + \varphi)\beta}, \frac{\vartheta(\delta + \varphi)}{\delta(\delta + \mu + \varphi)}, \frac{\vartheta(\delta + \varphi)}{\delta(\delta + \mu + \varphi)\omega} \\ \frac{\vartheta\mu}{\delta(\delta + \mu + \varphi)}, \frac{\vartheta\mu\varphi}{\delta(\delta + \mu + \varphi)\omega} \end{pmatrix}$$
(9)

Titik Kestabilan Adiksi

Titik kestabilan bebas adiksi adalah kondisi di mana tidak terdapat investasi aktif maupun perilaku kompulsif, sehingga I = G = P = 0.

Dari persamaan (5):

 $\vartheta + \omega P - \beta A = 0$ diperoleh:

$$A = \frac{\vartheta}{\beta}$$

Maka titik kestabilan adiksi untuk model AIGP adalah:

$$K_0 = (A, I, G, P) = \left(\frac{\theta}{B}, 0, 0, 0\right)$$
 (10)

Analisis kestabilan model AIGP

Analisis kestabilan dari titik ekuilibrium pada model ini didefinisikan sebagai suatu kondisi di mana, jika titik ekuilibrium mengalami gangguan kecil, sistem akan kembali menuju keadaan ekuilibrium tersebut. Langkah pertama dalam analisis kestabilan titik ekuilibrium adalah menentukan matriks Jacobian dari Persamaan (1) hingga (4), yaitu

$$J = \begin{bmatrix} -\beta & 0 & 0 & \omega \\ \beta & -\delta - \mu & 0 & 0 \\ 0 & \mu & -\delta - \varphi & 0 \\ 0 & 0 & \varphi & -\omega \end{bmatrix}$$
Untuk menemukan nilai eigen dari persamaan (11) maka det(λI =

Untuk menemukan nilai eigen dari persamaan (11) maka
$$\det(\lambda I - J) = 0$$

$$\det\begin{bmatrix} \lambda + \beta & 0 & 0 & -\omega \\ -\beta & \lambda + \delta + \mu & 0 & 0 \\ 0 & -\mu & \lambda + \delta + \varphi & 0 \\ 0 & 0 & -\varphi & \lambda + \omega \end{bmatrix} = 0$$

Diperoleh untuk nilai eigen nya yaitt

 $\lambda^4 + (-\beta - 2\delta - 4\lambda - \mu - \omega - \varphi)\lambda^3 + (2\beta\delta + 3\beta\lambda + \beta\mu + \beta\omega + \beta\varphi + \beta\omega)\lambda^4$ $\delta 2 + 6\delta\lambda + \delta\mu + 2\delta\omega + \delta\varphi + 6\lambda 2 + 3\lambda\mu + 3\lambda\omega + 3\lambda\varphi + \mu\omega + \mu\varphi +$ $(\omega \varphi)\lambda^2 + (-\beta \delta 2 - 4\beta \delta \lambda - \beta \delta \mu - 2\beta \delta \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \mu - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda \omega - \beta \delta \varphi - 3\beta \lambda 2 - 2\beta \lambda 2$ $2\beta\lambda\phi - \beta\mu\omega - \beta\mu\phi - \beta\omega\phi - 2\delta2\lambda - \delta2\omega - 6\delta\lambda2 - 2\delta\lambda\mu - 4\delta\lambda\omega - 2\delta\lambda\phi \delta\mu\omega - \delta\omega\phi - 4\lambda 3 - 3\lambda 2\mu - 3\lambda 2\omega - 3\lambda 2\phi - 2\lambda\mu\omega - 2\lambda\mu\phi - 2\lambda\omega\phi - 2\lambda\omega\phi - 3\lambda\omega\phi - 3\omega\phi -$ $\mu\omega\varphi$) $\lambda + (\lambda 4 + \beta\delta 2\lambda + \beta\delta 2\omega + 2\beta\delta\lambda 2 + \beta\lambda 2\mu + \beta\lambda 2\omega + \beta\lambda 2\varphi + \delta2\lambda\omega +$ $\delta\lambda 2\mu + 2\delta\lambda 2\omega + \delta\lambda 2\varphi + \lambda 2\mu\omega + \lambda 2\mu\varphi + \lambda 2\omega\varphi + \lambda 3\varphi + \beta\lambda 3 + \delta 2\lambda 2 + \lambda 2\omega\varphi + \lambda 3\omega\varphi + \lambda 3\omega$ $2\delta\lambda 3 + \lambda 3\mu + \lambda 3\omega + \delta\lambda\mu\omega + \delta\lambda\omega\phi + \lambda\mu\omega\phi + \beta\delta\lambda\mu + 2\beta\delta\lambda\omega + \beta\delta\lambda\phi +$ $\beta \delta \mu \omega + \beta \delta \omega \varphi + \beta \lambda \mu \omega + \beta \lambda \mu \varphi + \beta \lambda \omega \varphi = 0$ Bilangan Reproduksi Dasar (R_0)

Bilangan reproduksi dasar (R_0) bisa ditentukan menggunakan matrices generation method. Berdasarkan Persamaan (2) – (4), bilangan reproduksi dasar dihitung untuk menentukan potensi pertumbuhan aktivitas investasi aktif dalam siste. Berikut langkah langkahnya:

$$F = \begin{bmatrix} \beta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, V = \begin{bmatrix} \delta + \mu & 0 & 0 \\ -\mu & \delta + \varphi & 0 \\ 0 & -\varphi & \omega \end{bmatrix}$$

$$FV^{-1} = \begin{bmatrix} \frac{\beta}{(\delta + \mu)} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
Sehingga di peroleh untuk bilangan reproduksi dasarnya yaitu:

$$R_0 = \frac{\beta}{\delta + \mu}$$

Jika $R_0 > 1$ Aktivitas investasi aktif akan tumbuh: Modal yang dialokasikan cukup untuk mempertahankan dan memperbesar investasi aktif, keuntungan, dan kompulsi. Sistem bergerak menuju "endemik investasi aktif.", Jika $R_0 = 1$ Sistem dalam keadaan kritis: Setiap unit modal hanya cukup untuk menggantikan dirinya sendiri. Tidak tumbuh, tidak juga berkurang Stabil pada batas. Jika $R_0 < 1$ Aktivitas investasi akan menurun: Modal tidak cukup untuk mempertahankan investasi aktif. Dalam jangka panjang, semua investasi aktif akan hilang dan kembali ke keadaan bebas adiksi (tidak ada aktivitas).

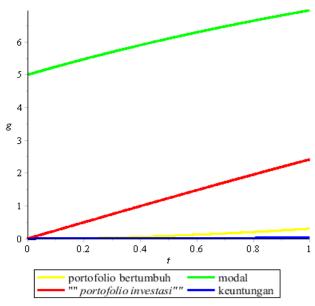
Simulasi numerik model AIGP pada kegiatan investasi

Nilai awal dan parameter menggunakan data simulasi yang di sajikan dalam tabel 3.1

meter	Nilai	Variabel la	Variabel lai Awal	
θ	5	A (0)	5	
ω	0.1	I (0)	0	
β	0.5	G (0)	0	
δ	0.2	P (0)	0	
μ	0.3			
φ	0.4			

subtitusi nilai parameter dan nilai awal parameter ke persamaan (5) - (8) dan diperoleh nilai kestabilan yaitu:

$$(A, I, G, P) = (16.6667, 16.6667, 8.3333, 33.3333)$$


Untuk nilai eigen nya diperoleh:

$$\lambda_1 = -0.2764, \lambda_2 = -0.7236, \lambda_3 = -0.6, \lambda_4 = -0.1$$

Jika nilai parameter di subtitusi pada bilangan reproduksi dasar maka di peroleh:

 $R_0 = 1$ ini berarti untuk simulasi data ini Sistem dalam keadaan kritis: Setiap unit modal hanya cukup untuk menggantikan dirinya sendiri. Tidak tumbuh, tidak juga berkurang, Stabil pada batas.

Untuk representasi model AIGP pada simulasi data diatas yaitu ada pada gambar berikut:

Gambar 2. Representasi Model AIGP

KESIMPULAN

Model AIGP memberikan pendekatan matematis yang efektif untuk memahami dinamika sistem investasi melalui aliran modal dari alokasi hingga pembentukan portofolio dan keuntungan. Hasil analisis menunjukkan bahwa kestabilan sistem sangat dipengaruhi oleh nilai-nilai parameter seperti tingkat alokasi modal, efisiensi investasi, dan produktivitas portofolio. Bilangan reproduksi dasar menjadi indikator penting dalam menentukan apakah sistem investasi akan berkembang atau mengalami degradasi.

Simulasi numerik menunjukkan bahwa sistem dapat berada dalam kondisi kritis, di mana modal hanya cukup untuk mempertahankan eksistensi investasi tanpa mengalami pertumbuhan. Dalam konteks ini, strategi investasi perlu dirancang secara adaptif agar sistem mampu bergerak ke arah pertumbuhan yang stabil dan menguntungkan. Model ini memberikan dasar bagi pengembangan alat bantu pengambilan keputusan investasi berbasis dinamika sistem dan pendekatan kuantitatif.

DAFTAR PUSTAKA

- Andayani, I. G. A. A., & Widiartha, I. M. A. (2021). Pemodelan Matematika pada Sistem Dinamik Ekonomi Mikro di Indonesia. Jurnal Matematika Integratif, 17(2), 101–110.https://doi.org/10.24843/jmi.2021.v17.i02.p03
- Fauzi, R., & Sari, D. M. (2022). Pemanfaatan Model Sistem Diferensial dalam Perencanaan Keuangan Pribadi. Jurnal Matematika UNNES, 11(2), 221–230.
- Hidayat, M. N., & Lestari, Y. (2020). Penerapan Simulasi Numerik dalam Model Perencanaan Investasi Mahasiswa. Jurnal Matematika Integratif, 16(1), 33–40
- Ningsih, S., & Prasetyo, T. (2019). Pemodelan Investasi Berkelanjutan di Indonesia: Studi Kasus pada Investor Ritel. Jurnal Keuangan dan Perbankan, 23(4), 725–736.
- Putri, R. M., & Firmansyah, D. (2023). Simulasi Model Portofolio Investasi pada Generasi Milenial dengan Pendekatan Kuantitatif. Jurnal Ekonomi dan Keuangan Indonesia, 71(1), 89–100.
- Rahmawati, L., & Hidayat, T. (2020). Analisis Stabilitas Model Investasi Saham Berbasis Sistem Dinamik. Jurnal Ilmiah Matematika dan Statistika, 20(1), 45–56.
- Syam, U. M., et al. (2023). Pendekatan Ilmiah terhadap Sistem Terapi dan Finansial: Studi Kasus Bekam dan Keseimbangan Ekonomi. Jurnal Matematika dan Terapan, 9(1), 55–62.
- Siregar, A., & Pohan, M. (2022). Model Dinamika Modal dan Keuntungan pada UMKM Menggunakan Sistem Persamaan Diferensial. Jurnal Ekonomi Terapan, 8(2), 112–121.
- Saputra, R., & Wijaya, H. (2024). Studi Pemodelan AIGP dalam Alokasi Investasi dengan Perspektif Matematis. Jurnal Riset Matematika Terapan Indonesia, 12(1), 13–24.
- Utami, D. W., & Nugroho, B. H. (2021). Model Matematika untuk Strategi Investasi di Pasar Modal Syariah Indonesia. Jurnal Sains dan Aplikasi, 4(3), 178–186.