
Jurnal Ilmiah Wahana Pendidikan, September 2022, 8 (15), 574-583

DOI: https://doi.org/10.5281/zenodo.7052276

p-ISSN: 2622-8327 e-ISSN: 2089-5364

Accredited by Directorate General of Strengthening for Research and Development

Available online at https://jurnal.peneliti.net/index.php/JIWP

Tifani Amalina¹, Danendra Bima Adhi Pramana², Betha Nurina Sari³

Teknik Informatika, Universitas Singaperbangsa Karawang

Abstract

Received: Revised: Accepted: 11 Agustus 2022 15 Agustus 2022 19 Agustus 2022 The creation of many businesses in the field of online-based sales or known as e-commerce is proof that internet technology is currently developing so rapidly in various industries, including business. Online shop is a business activity that uses E-Commerce in its marketing or trading operations. Knowing how interested consumers are in buying a product can be done by counting the number of sales transactions made, which is one of the information that can be collected. So that the increasing number of transaction activities by consumers there is very large and out of data. The results of this study indicate that the most optimal number of clusters is two clusters. From 45 frozen food product data, 3 frozen food products were found in cluster 1 and 42 frozen food products entered cluster 2. This study aims to apply the kmeans clustering method in grouping frozen food sales to find out the grouping of consumer interest in a product. frozen food. It is hoped that this research can be useful for the company and as a reference for further research.

Key Word: K-Means Clustering, Online Shop, Frozen Food.

(*) Corresponding Author:

tifani.amalina18091@student.unsika.ac.id

How to citate: Amalina, T., Pramana, D. B., & Sari, B. (2022). Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food. *Jurnal Ilmiah Wahana Pendidikan*, 8(15), 574-583. https://doi.org/10.5281/zenodo.7052276

PENDAHULUAN

Terciptanya banyak bisnis di bidang penjualan berbasis online atau yang dikenal dengan *e-commerce*, merupakan bukti bahwa teknologi internet saat ini berkembang begitu pesat di berbagai industri, termasuk bisnis. *Online shop* adalah kegiatan bisnis yang menggunakan *E-Commerce* dalam operasi pemasaran atau perdagangannya.

Mengetahui seberapa tertarik konsumen untuk membeli suatu produk dapat dilakukan dengan menghitung jumlah transaksi penjualan yang dilakukan, yang merupakan salah satu informasi yang dapat dikumpulkan. Sehingga semakin banyaknya kegiatan transaksi oleh konsumen terdapat data yang sangat besar dan banyak.

Pada penelitian sebelumnya yang dilakukan oleh Nasution et al (2021) dengan judul penelitian Penerapan Algoritma *K-Means* pada Penjualan *Frozen Food* Pada UD Soise Sosis Pematangsiantar didapatkan kesimpulan bahwa penerapan algoritma *K-Means* dapat mengelompokkan penjualan *Frozen Food* tertinggi dan terendah.

574

Minat konsumen terhadap suatu penjualan dapat dikategorikan ke dalam beberapa kelas berdasarkan intensitasnya. Oleh karena itu, untuk mengekstrak informasi dari data tersebut, diperlukan teknik pengolahan data.

Terdapat beberapa metode yang dapat digunakan untuk melakukan pengelompokkan, seperti salah satunya yaitu *clustering*. Metode *Clustering* dapat digunakan untuk mengelompokkan suatu data yang memiliki kesamaan antara satu data dengan data yang lainnya (Herlinda, Darwis, & Dartono, 2021). Untuk menunjang keberhasilan proses analisis, maka diperlukan juga penerapan suatu algoritma. Adapun algoritma yang digunakan pada penelitian ini yaitu algoritma *k-means*.

K-Means Clustering adalah teknik pengelompokan data non-hirarki yang memisahkan data ke dalam *cluster*, mengelompokkan data dengan fitur yang sama bersama-sama dan mengelompokkan data dengan karakteristik yang berbeda ke dalam kelompok yang berbeda.

Penelitian yang dilakukan oleh Luthfi et al (2019) dengan judul penelitian Implementasi Algoritma *K-Means Clustering* Untuk Pengelompokkan Minat Konsumen Pada Produk *Online Shop* menghasilkan kesimpulan bahwa dengan menerapkan algoritma *k-means clustering* didapatkan pengelompokkan terhadap minat konsumen terbagi menjadi 3 *cluster*. Produk yang tingkat minat konsumennya rendah masuk ke dalam *cluster* 1, produk yang tingkat minat konsumennya sedang masuk ke dalam *cluster* 2 sedangkan produk yang memiliki tingkat konsumen tinggi masuk ke dalam *cluster* 3.

Selanjutnya penelitian yang dilakukan oleh Triyandana, dkk (2022) dengan judul penelitian Penerapan Data Mining Pengelompokkan Menu Makanan dan Minuman Berdasarkan Tingkat Penjualan Menggunakan Metode *K-Means* memiliki hasil didapatkan 3 *cluster* terhadap pengelompokkan menu makanan dan minuman berdasarkan tingkat penjualannya. Pada *cluster* 1 terdapat 8 menu yang memiliki tingkat penjualan rendah, pada *cluster* 2 terdapat 40 menu yang memiliki tingkat penjualan sedang dan 7 menu dengan tingkat penjualan tinggi. Dari ketiga *cluster* tersebut didapatkan nilai DBI sebesar -0,457.

Pada penelitian yang telah dilakukan oleh (Kamila, Khairunnisa, & Mustakim, 2019) menyatakan bahwa perbandingan antar kedua algoritma *clustering*, *k-medoids* dan *k-means* pada pengelompokkan data produk tidak menunjukkan perbedaan yang signifikan. Algoritma k-means hanya memerlukan waktu rata – rata 1 detik sedangkan pengolahan data dengan menggunakan algoritma *k-medoids* membutuhkan waktu ratarata 1 menit 38 detik yang artinya apabila semakin tinggi iterasi dan pengelompokkan yang ditentukan, maka pengolahan data akan semakin lama.

Mengacu pada latar belakang di atas, maka pada penelitian ini menerapkan metode *k-means clustering* dalam pengelompokkan penjualan *frozen food* untuk mengetahui pengelompokan minat konsumen pada suatu produk *frozen food*.

METODE PENELITIAN

Metode K-Means *Clustering*

Metode *k-means* membagi data menjadi beberapa kelompok sehingga data dengan karakteristik yang sama berada pada *cluster* yang sama dan data dengan karakteristik yang berbeda berada pada *cluster* yang berbeda (Rohmawati, Defiyanti, & Jajuli, 2015). Secara lebih spesifik, algoritma k-means adalah sebagai berikut, menurut Sarwono yang dikutip oleh Rohmawati, Defiyanti, dan Jajuli (2015):

- 1. Menetapkan K sebagai jumlah cluster yang diinginkan.
- 2. menghasilkan nilai random untuk pusat cluster awal (centroid) sebanyak k
- 3. Menggunakan rumus jarak setiap data *input* terhadap masing-masing *centroid* menggunakan rumus jarak *Euclidean (Euclidean Distance)* hingga ditemukan jarak yang paling pendek dari setiap data dengan *centroid*. persamaan *Euclidean Distance* antara lain:

$$d(xi,\mu j) = \sqrt{\sum (xi - \mu j)^2}$$

Keterangan:

x_i: data kriteria

μj: centroid pada cluster ke-j

4. Mengklasifikasikan setiap data berdasarkan kedekatannya dengan *centroid* (jarak terkecil).

Memperbaharui nilai *centroid*. Menurut Rahman dkk (2017) nilai *centroid* baru diperoleh dari rata-rata *cluster* yang bersangkutan dengan menggunakan rumus:

$$C_k = \frac{1}{n_k} \sum d_i$$

Keterangan:

n_k : Jumlah data dalam *cluster* k

d_i:: Jumlah dari nilai jarak yang masuk dalam masing – masing *cluster*.

- 5. Melakukan perulangan dari langkah 2 hingga 5 sampai anggota tiap *cluster* tidak ada yang berubah.
- 6. Jika langkah terakhir telah terpenuhi, maka nilai pusat *cluster* (μj) pada iterasi terakhir akan digunakan sebagai parameter untuk menentukan klasifikasi data.

Pengertian dari *K-Means Clustering* K seharusnya menjadi konstanta yang mewakili jumlah *cluster* yang diinginkan, dan Means dalam konteks ini mengacu pada nilai rata-rata grup data, yang dalam konteks ini ditetapkan sebagai *cluster*. Salah satu teknik untuk melakukan pengelompokan data dengan sistem partisi adalah clustering, yaitu suatu metode analisis data atau metode data mining yang melakukan proses pemodelan tanpa pengawasan. Metode *K-Means* bertujuan untuk membagi data yang ada menjadi beberapa kelompok, yang masing-masing memiliki fitur yang berbeda dari

yang lain sambil berbagi beberapa sifat yang sama (Nasari & Darma, 2015). Berikut adalah sarananya:

- 1. Tentukan nilai k sebagai jumlah *cluster* yang ingin dibentuk
- 2. Inisialisasi k sebagai centroid yang dapat dibangun secara random
- 3. Hitung jarak setiap data ke masing-masing centroid menggunakan persamaan *Euclidean Distance* yaitu:

$$d(P,Q) = \sqrt{\sum_{j=1}^{p} (x_{j}(P) - x_{j}(Q))^{2}}$$

- 4. Kelompokkan setiap data berdasarkan jarak terdekat antara data dengan *centroid*nya.
- 5. Tentukan posisi centroid baru(k).
- 6. Kembali ke langkah 3 jika posisi *centroid* baru dengan *centroid* lama tidak sama.

K-Means Clustering termasuk dalam teknik non-hierarki yang membagi data menjadi satu atau lebih cluster, dengan data yang sama dikelompokkan bersama dalam satu *cluster* dan data yang beragam dibagi menjadi beberapa *cluster*. Karena mudah digunakan, algoritma ini adalah yang paling banyak digunakan. Kekurangan dari algoritma ini adalah sangat bergantung pada inisialisasi *cluster* (Rahman, Wiranto, & Anggrainingsih, 2017).

HASIL DAN PEMBAHASAN

Hasil

1. Seleksi Data

Jumlah transaksi, total penjualan, dan rata-rata jumlah transaksi dan total penjualan setiap produk selama periode waktu tertentu adalah 45 titik data yang akan dimasukkan ke dalam kategori produk penelitian ini, yang masing-masing memiliki tiga fitur. Periode transaksi selama 1 bulan, atau Mei 2022, digunakan dalam penelitian ini. Data yang diproses dapat dilihat pada Tabel 1.

Tabel 1. Data Yang Diproses

No.	Barang	Penjualan	Rata-Rata
1.	Nugget Fiesta	5281	660,125
2	Nugget So Good	6992	874,00
3.	Nugget Kanzler	768	104,75
4.	Nugget Belfoods	23706	2963,25
5.	Nugget Champ	18795	2349,375
6.	Nugget Sunny Gold	16979	2122,375
7.	Nugget Goldstar	33249	4156,125
8.	Nugget Ciki Wiki	2143	267,875
9.	Nugget Akumo	3578	447,25
10.	Nugget Hato	201	25,125
11.	Baso Sapi Cap Mantap	410	51,25
12.	Baso Sapi Cap Oke	49	6,125
13.	Baso Sapi Cap Manja	103	12,875
14.	Baso Ayam	45	5,625

15	Baso Ikan	56	7
16.	Sosis Kanzler	6069	758,625
17.	Sosis Champ	245	30,625
18.	Sosis Fiesta	409	51,125
19.	Sosis Curah	21	2,625
20.	Karage Fiesta	23	2,875
21.	Ayam Beku	112	48
22	Ayam Cincang	32	4
23	Drumb Stick	182	22,75
24.	Karage Kanzler	3177	397,125
25.	Karage So Good	308	46,05
26.	Karage Champ	669	83,625
27.	Dimsum Ayam	14	1,75
28.	Dimsum Sapi	3	0,375
29.	Dimsum Udang	110	13,75
30	Beef Kanzler	602	75,25
31	Stick crab	758	94,75
32	Tofu Cap Ena	422	52,75
33	Tofu Cap Nikmat	553	69,125
34	Spicy Wings So Good	394	49,25
35	Spicy Wings Kanzler	579	72,375
36	Spicy Wings Fiesta	347	43,375
37	French Fries Golden Star	60	7,5 5
38	French Fries So Good	40	
39	French Fries Champ	22	2,75
40	French Fries Kanzler	225	28,125
41	Bakso Tahu	11	1,375
42	Bakso Cireng	97	12,125
43	Cireng Isi ayam	5	0,625
44	Cireng Rujak	6	0,75
45	Cireng Isi Daging	30	03,75

2. Menentukan Jumlah Cluster dan Nilai Centroid Awal

Jumlah *cluster* dan nilai *Centroid* awal harus ditentukan selanjutnya. Pada tahap awal, telah ditetapkan bahwa dua klaster merupakan angka yang paling efektif untuk mengklasifikasikan minat pelanggan. Adapun cluster yang dibentuk yaitu cluster tinggi (C1) dan cluster (C2). C1 diperoleh dari nilai tertinggi yang terdapat pada tabel 1 dan C2 diperoleh dari nilai terendah pada tabel 1. Cara mencari nilai centroid awal untuk iterasi 1 yaitu:

- C1 = Max (660,125; 874; 104,75; 2963,25; 2349,375; 2122,375; 4156,125; 267,875; 447,25; 25,125; 51,25; 6,125; 12,875; 5,625; 7; 758,625; 30,625; 51,125; 2,625; 2,875; 14; 4; 22,75; 397,125; 47,5; 83,625; 1,75; 0,375; 13,75; 75,25; 94,75; 52,75; 69,125; 49,25; 72,375; 43,375; 7,5; 5; 2,75; 28,125; 1,375; 12,125; 0,625; 0,75; 03,75) = 4156,125

Berdasarkan perhitungan di atas dapat diketahui nilai centroid awal, dimana mencari nilai maksimum dan minimum melalui proses Iterasi. Seperti yang dapat dilihat pada table 2 berikut.

Tabel. 2. Centroid Data Awal

C1	4156,125
C2	0.375

3. Menghitung jarak setiap jumlah

Berikut merupakan perhitungan jarak setiap data pada C1, perhitungan ini berdasarkan jarak terdekat dari setiap produk *frozen food* dengan centroid:

Produk
$$1 = \sqrt{(660,125 - 4156,125)^2} = 3496$$

Produk $2 = \sqrt{(874 - 4156,125)^2} = 3282,12$
Produk $3 = \sqrt{(104,75 - 4156,125)^2} = 4051,375$
Produk $4 = \sqrt{(2963,25 - 4156,125)^2} = 1192,875$
Produk $5 = \sqrt{(2349,375 - 4156,125)^2} = 1806,75$
Produk $6 = \sqrt{(2122,375 - 4156,125)^2} = 2033,75$
Produk $7 = \sqrt{(4156,125 - 4156,125)^2} = 0$
Produk $8 = \sqrt{(267,875 - 4156,125)^2} = 3888,25$
Produk $9 = \sqrt{(447,25 - 4156,125)^2} = 3708,875$
Produk $10 = \sqrt{(25,125 - 4156,125)^2} = 4131$
Produk $10 = \sqrt{(3,75 - 4156,125)^2} = 4152,375$

Berikut merupakan perhitungan jarak pada setiap data pada C2:

Produk
$$1 = \sqrt{(660,125 - 0,375)^2} = 659,75$$

Produk $2 = \sqrt{(874 - 0,375)^2} = 873,625$
Produk $3 = \sqrt{(104,75 - 0,375)^2} = 104,375$
Produk $4 = \sqrt{(2963,25 - 0,375)^2} = 2962,875$
Produk $5 = \sqrt{(2349,375 - 0,375)^2} = 2345,625$
Produk $6 = \sqrt{(2122,375 - 0,375)^2} = 2118,625$
Produk $7 = \sqrt{(4156,125 - 0,375)^2} = 4152,375$
Produk $8 = \sqrt{(267,875 - 0,375)^2} = 264,125$
Produk $9 = \sqrt{(447,25 - 0,375)^2} = 443,5$
Produk $10 = \sqrt{(25,125 - 0,375)^2} = 21,375$
Produk $45 = \sqrt{(3,75 - 0,375)^2} = 0,375$

Berdasarkan perhitungan di atas dapat di dilihat pada tabel 3 merupakan hasil dari perhitungan jarak dengan titik pusat pada Iterasi.

Tabel 3. Hasil Perhitungan Jarak Data Dengan Titik Pusat Cluster

No.	Nama Produk	Jarak Terpendek	C1	C2
1.	Nugget Fiesta	659,75		1
2	Nugget So Good	873,625		1
3.	Nugget Kanzler	104,375		1
4.	Nugget Belfoods	1192,875	1	
5.	Nugget Champ	1806,75	1	
6.	Nugget Sunny Gold	2033,75	1	
7.	Nugget Goldstar	0		1
8.	Nugget Ciki Wiki	264,125		1
9.	Nugget Akumo	443,5		1
10.	Nugget Hato	21,375		1
•••			•••	
45	Cireng Isi Daging	0,375		1

Pada tabel 3 di atas dapat di lihat bahawa pada perhitungan jarak data dengan pusat *cluster* didapatkan perhitungan penjualan tertinggi dan terendah, dimana penjualan tertinggi di letakkan pada kolom C1 dan penjualan terendah terletak pada kolom C2.

4. Menentukan Kelompok dan Menghitung Kembali Nilai Centroid

Sistem akan menghitung jarak antara titik masing-masing objek (data penjualan) dan titik pusat *Cluster* sebelum mengelompokkan data berdasarkan perbandingan dan memilih jarak yang paling dekat dengan pusat *Cluster*; jarak ini menunjukkan bahwa data berada dalam satu kelompok dengan pusat Cluster terdekat dengan membandingkan hasil *Cluster* dan diambil yang terkecil. Jika nilai terendah terdapat di cluster 1 (C1) maka masuk ke dalam cluster 1 dan begitupun sebaliknya. Hasil dari pengelompokkan iterasi 1 dapat dilihat pada table 4.

Tabel 4. Hasil Cluster Iterasi 1

Cluster	Nilai
C1	3
C2	42

5. Iterasi Proses K-Means

Sistem akan menjalankan kembali perhitungan menggunakan nilai titik pusat Cluster (Centroid) terbaru. Sampai kondisi untuk mengakhiri proses K-Means Clustering terpenuhi, yaitu ketika hasil pengelompokan dan nilai Centroid yang dibuat tetap tidak berubah dari hasil perhitungan sebelumnya, proses ini akan terus berlanjut. Dikarenakan tidak ada perubahan yang terjadi pada nilai centroid yang dihasilkan pada iterasi ke 2, maka hasil akhir yang didapatkan yaitu C1 = 3 dan C2 = 42. Seperti yang dapat dilihat pada Tabel 5 merupakan hasl pengelompokkan iterasi akhir yang didapatkan.

Tabel 5. Pengelompokan Iterasi Akhir

No.	Barang	Penjualan	Rata-Rata	C1	C2	Kelompok
1.	Nugget Fiesta	5281	660,125	3496	659,75	C2
2	Nugget So Good	6992	874,00	3282,12	873,625	C2

3.	Nugget Kanzler	768	104,75	4051,375	104,375	C2
4.	Nugget Belfoods	23706	2963,25	1192,875	2962,875	C1
5.	Nugget Champ	18795	2349,375	1806,75	2345,625	C1
6.	Nugget Sunny Gold	16979	2122,375	2033,75	2118,635	C1
7.	Nugget Goldstar	33249	4156,125	0	4152,375	C2
8.	Nugget Ciki Wiki	2143	267,875	3888,25	264,125	C2
9.	Nugget Akumo	3578	447,25	3708,875	443,5	C2
10.	Nugget Hato	201	25,125	4131	21,375	C2
11.	Baso Sapi	410	51,25	4104,875	47,5	C2
	CapMantap					
12.	Baso Sapi Cap Oke	49	6,125	4150	57,5	C2
13.	Baso Sapi Cap Manja	103	12,875	4143,25	9,125	C2
14.	Baso Ayam	45	5,625	4150,5	1,875	C2
15	Baso Ikan	56	7	4149,125	3,25	C2
16.	Sosis Kanzler	6069	758,625	3397,5	754,875	C2
17.	Sosis Champ	245	30,625	4125,5	26,875	C2
18.	Sosis Fiesta	409	51,125	4105	47,375	C2
19.	Sosis Curah	21	2,625	4153,5	1,125	C2
20.	Karage Fiesta	23	2,875	4153,25	0,875	C2
21.	Ayam Beku	112	48	4142,125	10,25	C2
22	Ayam Cincang	32	4	4152,125	0,25	C2
23	Drumb Stick	182	22,75	4133,375	19	C2
24.	Karage Kanzler	3177	397,125	3759	393,375	C2
25.	Karage So Good	308	46,05	4108,625	43,75	C2
26.	Karage Champ	669	83,625	4072,5	79,875	C2
27.	Dimsum Ayam	14	1,75	4154,375	2	C2
28.	Dimsum Sapi	3	0,375	4155,75	3,375	C2
29.	Dimsum Udang	110	13,75	4142,375	10	C2
30	Beef Kanzler	602	75,25	4080,875	71,5	C2
31	Stick crab	758	94,75	4061,375	91	C2
32	Tofu Cap Ena	422	52,75	4103,375	49	C2
33	Tofu Cap Nikmat	553	69,125	4087	65,375	C2
34	Spicy Wings So Good	394	49,25	4106,875	45,5	C2
35	Spicy Wings Kanzler	579	72,375	4083,75	68,625	C2
36	Spicy Wings Fiesta	347	43,375	4112,75	39,625	C2
37	French Fries Golden	60	7,5	4148,625	3,75	C2
	Star					
38	French Fries So Good	40	5	4151,125	1,25	C2
39	French Fries Champ	22	2,75	4153,375	1	C2
40	French Fries Kanzler	225	28,125	4138	14,375	C2
41	Bakso Tahu	11	1,375	4154,75	2,375	C2
42	Bakso Cireng	97	12,125	4144	8,375	C2
43	Cireng Isi ayam	5	0,625	4155,5	3,125	C2
44	Cireng Rujak	6	0,75	4155,375	3	C2
45	Cireng Isi Daging	30	03,75	4152,375	0	C2

5. Hasil Pengelompokan

Setelah didapatkan hasil akhir dari proses iterasi *K-Means Clustering* diperoleh hasil pengelompokan pada masing-masing *Cluster* yaitu. Hasil pengelompokan dapat dilihat pada Tabel 6.

Tabel 6. Hasil Pengelompokan

	5 1			
Cluster	Jumlah Produk	Anggota Produk		

2	Nugget Polfoods Nugget
3	Nugget Belfoods, Nugget
	Champ, Nugget Sunny
40	Gold.
42	Nugget Fiesta, Nugget
	So Good, Nugget
	Kanzler, Nugget
	Goldstar, Nugget Ciki
	Wiki, Nugget Akumo,
	Nugget Hato, Bakso Sapi
	Cap Mantap, Bakso Sapi
	Cap Manja, Bakso
	Ayam, Bakso Ikan, Sosis
	Kanzler, Sosis Champ,
	Sosis Fiesta, Sosis
	Curah, Karage Fiesta,
	Ayam Beku, Ayam
	Cincang, Drumb Stick,
	Karage Kanzler, Karage
	So Good, Karage
	Champ, Dimsum Ayam,
	Dimsum Sapi, Dimsum
	Udang, Beef Kanzler,
	Stick Crab, Tofu Cap
	Enak, Tofu Cap Nikmat,
	Spicy Wings So Good,
	Spicy Wings Kanzler,
	Spicy Wings Fiesta,
	French Fries Golden
	Star, French Fires So
	Good, Frnech Fries
	Champ, French Fries
	Kanzler, Bakso Tahu,
	Bakso Cireng, Cireng Isi
	Ayam, Cireng Rujak,
	Cireng Isi Daging.
	3 42

KESIMPULAN

Dari hasil penelitian *K-Means Clustering* untuk pengelompokan minat konsumen pada produk frozen food yang telah diuraikan disimpulkan bahwa penerapan algoritma *K-Means Clustering* pada data penjualan produk Frozen Food, menghasilkan sebuah informasi mengenai data pengelompokan minat konsumen tertinggi dan terendah. Dari 45 produk yang diteliti terdapat 3 produk yang merupakan anggota *Cluster* 1 atau dapat diartikan sebagai produk *frozen food* yang memiliki minat konsumen rendah dan 42 produk yang masuk ke dalam *Cluster* 2 yang dapat diartikan sebagai produk *frozen food* yang memiliki minat konsumen tinggi.

REFERENSI

- Herlinda, V., Darwis, D., & Dartono. (2021). Analisis Clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means. *Jurnal Teknologi Dan Sistem Informasi (JTSI)*, 2(2), 94-99.
- Kamila, I., Khairunnisa, U., & Mustakim. (2019). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau. *Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi*, 5(1), 119 125.
- Larose, D. T. 2005. Discovering Knowledge In Data: An Introduction To Data Mining. JhonWilley & Sons, Inc.Kusrini & Luthfi, E. T. 2009. Algoritma Data Mining. Yogyakarta: Andi
- Luthfi, M. A., & Nilogiri, A. (2019). Implementasi Algoritma K-Means Clustering Untuk Pengelompokan Minat Konsumen Pada Produk Online Shop. *Universitas Muhammadiyah Jember*, 1-5.
- Mulyati, S. (2015). Penerapan Data Mining dengan Metode Clustering untuk Pengelompokan Data Pengiriman Burung. Seminar Ilmiah Nasional Teknologi Komputer. 30-35.
- Nasari, F., & Darma, S. (2015). Penerapan K-Means Clustering pada Data Penerimaan Mahasiswa Baru (Studi Kasus: Universitas Potensi Utama). *Seminar Teknologi Informasi dan Multi Media 2015* (pp. 73-78). Yogyakarta: STMIK AMIKOM.
- Nasution, S. A., Poningsih, & Okprana, H. (2021). Penerapan Algoritma K-Means Pada Penjualan Frozen Food Pada UD Soise Sosis Pematangsiantar. *Jurnal Sistem Komputer dan Informatika (JSON)*, 2(2), 171-177.
- Piatetsky, G. & Shapiro. 2006. An Introduction Machine Learning, data mining, and Knowledge discovery, Course in data mining Kdnuggets.
- Rohmawati, N., Defiyanti, S., & Jajuli, M. (2015). Implementasi Algoritma K-MEANS dalam Pengklasteran Mahasiswa Pelamar Beasiswa. *Jurnal Ilmiah Teknologi Informasi Terapan*, 1(2), 62-67.
- Silahi, M. (2018). Analisis Clustering Menggunakan Algoritma K-Means Terhadap Penjualan Produk Padapt Batamas Niaga Jaya. *Computer Based Information System Journal*, 6(2), 20-34.