Prediksi Harga Minyak Kelapa Sawit Menggunakan Linear Regression Dan Random Forest

  • Yusuf Supriyanto Universitas Singaperbangsa Karawang
  • M. Ilhamsyah Universitas Singaperbangsa Karawang
  • Ultach Enri Universitas Singaperbangsa Karawang

Abstract

Commodity export is an important activity because it can open up new market opportunities abroad. Besides being able to increase investment and foreign exchange for a country, palm oil is a plantation product that plays an important role in the Indonesian economy, palm oil is the largest foreign exchange earner. In palm oil exports, the volume tends to increase from 2016 to 2019 but when viewed from the export value of palm oil, it tends to fluctuate. Therefore it is necessary to predict the price of palm oil to help make commodity export decisions and also help palm oil investors in maximizing profits, in this study to predict the price of palm oil used data mining methods with the implementation of the Linear Regression and Random Forest algorithms using rapidminer, with data sharing scenarios training and testing is divided into three, namely 90:10, 80:20 and 70:30 to determine the performance of the algorithm. The data that will be used for research is historical data on palm oil prices taken from investing.com. From the results of the implementation of the algorithm obtained in the 90:10 data sharing scenario, the best algorithm is Random Forest with RMSE 25,106 results, in the second scenario with 80:20 data sharing the best algorithm is Linear Regression with RMSE 31,174, in the third scenario 70:30 Linear data sharing. regression has the best result with RMSE 30,227. then from the three scenarios, the Linear Regression algorithm gets the best performance

References

Amriana, A. A. Kasim, and M. Maghfirat. 2020.“Penentuan Harga Tandan Buah Segar (TBS) Kelapa Sawit Menggunakan Metode Fuzzy Logic,” Ilk. J. Ilm., vol. 12, no. 3, pp. 236–244, doi: 10.33096/ilkom.v12i3.619.236-244.

A. P. Hintarsyah, J. Christy, and H. L. H. S. Warnars. 2018.“Forecasting Sebagai Decision Support Systems Aplikasi dan Penerapannya Untuk Mendukung Proses Pengambilan Keputusan.,” J. Sist. Komput., vol. 8, no. 1, pp. 19–27.

A. Bode.2019.“Perbandingan Metode Prediksi Support Vector Machine Dan Linear Regression Menggunakan Backward Elimination Pada Produksi Minyak Kelapa,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 4, no. 2, pp. 104–107, , doi: 10.51876/simtek.v4i2.57.

A. Fitri Boy. 2020.“Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),” J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR.

A. Primajaya and B. N. Sari. 2018.“Random Forest Algorithm for Prediction of Precipitation,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, doi: 10.24014/ijaidm.v1i1.4903.

H. Aini, H. Haviluddin, E. Budiman, M. Wati, and N. Puspitasari.2019. “Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Backpropagation Neural Network,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 1, no. 1, p. 24, doi: 10.30872/jsakti.v1i1.2261.

I. Firnando, V. Wijaya, E. Yanto, and D. Jollyta. 2019.“Implementasi Algoritma Apriori Dan Forecasting Pada Transaksi Penjualan,” J. Mantik Penusa, vol. 3, no. 3, pp. 25–29,.

I. Priyadi, J. Santony, and J. Na’am. 2019.“Data Mining Predictive Modeling for Prediction of Gold Prices Based on Dollar Exchange Rates, Bi Rates and World Crude Oil Prices,” Indones. J. Artif. Intell. Data Min., vol. 2, no. 2, p. 93, , doi: 10.24014/ijaidm.v2i2.6864.

J. Sanjaya, E. Renata, V. E. Budiman, F. Anderson, and M. Ayub. 2020. “Prediksi Kelalaian Pinjaman Bank Menggunakan Random Forest dan Adaptive Boosting,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 1, pp. 50–60, doi: 10.28932/jutisi.v6i1.2313.

M. Harahap, A. Mutia, D. Benny, M. Simatupang, and B. S. Ginting. 2021.“Implementasi Algoritma Learning Vector Quantization ( LVQ ) Pada Prediksi Produksi Tandan Buah Segar Pada Perkebunan Kelapa Sawit,” vol. 20, no. 2, pp. 124–129.

N. R. Lase and F. Riandari. 2020. “Perancangan Aplikasi Prediksi Jumlah Pendaftar Siswa Baru Dengan Metode Regresi Linier ( Studi Kasus : SMA RK Deli Murni Bandar Baru ),” vol. 3, no. 3, pp. 330–334.

Nurhadin, E.R. Jan.2021.”Prediksi Jumlah Pendaftar Haji Lanjut Usia Menggunakan Jaringan Syaraf Tiruan Backpropagation”. JIKO (Jurnal Informatika dan Komputer). Vol. 4, No. 2

R. M. Anggraeni. 2014. “Perbandingan Algoritma Apriori dan Algoritma FP-Growth untuk Perekomendasi Pada Transaksi Peminjaman Buku di Perpustakaan Universitas Dian Nuswantoro,” Tek. Inform., pp. 1–6.

S. Andriyani and N. Sihombing.2018. “Implementasi Metode Backpropagation Untuk Prediksi Harga Jual Kelapa Sawit Berdasarkan Kualitas Buah,” Jurteksi, vol. 4, no. 2, pp. 155–164, doi: 10.33330/jurteksi.v4i2.40.

T. Syahputra, J. Halim, and E. P. Sintho. 2018. “Penerapan Data Mining Dalam Menentukan Pilihan Jurusan Bidang Studi SMA Menggunakan Metode,” Penerapan Data Min. dalam Menentukan Pilihan Jur. di Bid. Stud. SMA menggunakan Metod. Clust. Dengan Tek. Single Link. JURTEKSI, vol. IV, no. 2, pp. 1–4,.

W. Handoko, M. Iqbal, and S. Informasi. 2021. “Prediksi Peminatan Program Studi Pada Penerimaan,” vol. 4307, no. June, pp. 231–235,.

Published
2022-05-18
How to Cite
Supriyanto, Y., Ilhamsyah, M., & Enri, U. (2022). Prediksi Harga Minyak Kelapa Sawit Menggunakan Linear Regression Dan Random Forest. Jurnal Ilmiah Wahana Pendidikan, 8(7), 178-185. https://doi.org/10.5281/zenodo.6559603

Most read articles by the same author(s)