Klasifikasi Pemilihan Sopir Pengangkut Ruminansia Besar (Sapi) dengan Algoritma Support Vector Machine (SVM)

  • Rifky Maulana Universitas Singaperbangsa Karawang
  • Jajam Haerul Jaman Universitas Singaperbangsa Karawang
  • Aji Primajaya Universitas Singaperbangsa Karawang

Abstract

The condition of livestock is affected by the transportation process both before transportation, during transportation and at the end of transportation. The three main things that are affected by transportation are thermal pressure, physiological pressure and physical condition pressure. Bad factors due to logistics usually result in the feeling of discomfort felt by animals during the trip. Cattle logistics can cause stress to cows. This is due to rough handling during transport, poor shipping lane conditions, overcrowding, inadequate air inlets, extremes of temperature and humidity, and wind speeds. Cows that suffer from stress have an impact on reducing the weight of the cow. Classifying drivers for transporting large ruminants (cows) is important in order to be able to select good drivers so that animal welfare during the trip can be considered. The research methodology that will be applied in this study is by using the Knowledge Discovery In Databases (KDD) methodology. Finding patterns from large and complex data, obtaining correct, new, and useful information is the result of the Knowledge Discovery in Databases (KDD) analysis process with the stages of data selection, preprocessing, transformation, modeling, and evaluation. The algorithm used is the Support Vector Machine (SVM) using four kernels, namely the linear kernel, the polynomial kernel, the sigmoid kernel, and the RBF kernel. Data division using traintestsplit, divided into two scenarios, namely 70:30 and 80:20. Classification is divided into 8 classes. The results of the research after testing the model by calculating Accuracy, Precision, Recall, and F1-Score. The best result is a linear kernel with an accuracy of 100%, a precision of 100%, a recall of 100%, and an f1-score of 100% in the 80:20 division scenario.

References

Asa, R. S. (2019). Identifikasi Penyaluran Zakat Menggunakan Algoritma C4.5 (Studi Kasus di BAZNAS Kabupaten Agam). Jurnal Sains Dan Informatika, 5(1), 50. https://doi.org/10.22216/jsi.v5i1.4048

Azis, F. A., Liman, & Widodo, Y. (2013). The Potency of waste rice for feed of Bali Cows in Sukoharjo II Village Sukoharjo Sub-District Pringsewu District. 26–32

Ba, W., Rianto, E., & Mawati, S. (2019). Respon Fisiologis dan Lama Pemulihan pada Kambing Kejobong Jantan Muda dan Dewasa Akibat Transportasi ( The Physiological Responses And Recovery Time in Adult and Young Kejobong Goats After Transportation ). 444–450.

Costa, L. N., & To. (2009). Short-term stress: The case of transport and slaughter. Italian Journal of Animal Science, 8(SUPPL. 1), 241–252. https://doi.org/10.4081/ijas.2009.s1.241

Dahl-Pedersen, K., Foldager, L., Herskin, M. S., Houe, H., & Thomsen, P. T. (2018). Lameness scoring and assessment of fitness for transport in dairy cows: Agreement among and between farmers, veterinarians and livestock drivers. Research in Veterinary Science, 119(May), 162–166. https://doi.org/10.1016/j.rvsc.2018.06.017

Eska, J. (2016). Penerapan Data Mining Untuk Prekdiksi Penjualan Wallpaper Menggunakan Algoritma C4.5 STMIK Royal Ksiaran. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 2, 9–13.

Edwards-Callaway, L. N., Walker, J., & Tucker, C. B. (2019). Culling decisions and dairy cattle welfare during transport to slaughter in the United States. Frontiers in Veterinary Science, 5(JAN), 1–5. https://doi.org/10.3389/fvets.2018.00343

Febriyani, A., Prayoga, G. K., & Nurdiawan, O. (2021). Index Kepuasan Pelanggan Informa dengan Menggunakan Algoritma C.45. 8(6), 330–335. https://doi.org/10.30865/jurikom.v8i6.3686

Fisher, A. D., Colditz, I. G., Lee, C., & Ferguson, D. M. (2009). The influence of land transport on animal welfare in extensive farming systems. Journal of Veterinary Behavior: Clinical Applications and Research, 4(4), 157–162. https://doi.org/10.1016/j.jveb.2009.03.002

Gopar, R. A., Afnan, R., Rahayu, S., & Astuti, D. A. (2020). Respon Fisiologis dan Metabolit Darah Kambing dan Domba yang Ditransportasi dengan Pick-Up Triple-Deck. Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 8(3), 109–116. https://doi.org/10.29244/jipthp.8.3.109-116

Gratiana, R. C. (2019). Gambaran Kristal Sedimen Urin Pada Sopir Bus di Terminal Bus Oebobo Kota Kupang Tahun 2019. Poltiteknik Kesehatan Kemenkes Kupang, 16. http://repository.poltekeskupang.ac.id/1888/1/Clarita Reko_KTI.pdf

Herskin, M. S., Hels, A., Anneberg, I., & Thomsen, P. T. (2017). Livestock drivers’ knowledge about dairy cow fitness for transport – A Danish questionnaire survey. Research in Veterinary Science, 113(September), 62–66. https://doi.org/10.1016/j.rvsc.2017.09.008

Maimon, O., & Rokach, L. (2011). Data mining and knowledge discovery handbook. In Choice Reviews Online (Vol. 48, Issue 10). https://doi.org/10.5860/choice.48-5729

Matindas, R. 2022. Manajemen Sumber Daya Manusia: Lewat Konsep AKU (ambisi, kenyataan dan usaha). Pustaka Utama Grafiti. Jakarta

Maulana, A., Nugroho, A., & Romli, I. (2021). Optimalisasi Support Vector Machine Menggunakan Particle Swarm Optimization Untuk Mendiagnosa Penyakit Kanker Payudara. 1(2), 1–11.

Pertanian, K. (2019). Buku Outlook Komoditas Peternakan Sapi Potong & Daging Sapi. Pusat Data Dan Sistem Informasi Pertanian Sekretariat Jenderal, 53(9), 21–25. http://www.elsevier.com/locate/scp

Pratama, F. A., Narasati, R., & Amalia, D. R. (2019). Pengaruh Kata Cashback Terhadap Peningkatan Penjualan Menggunakan Data Mining. 3(2), 1–5.

Ritonga, A. S., & Purwaningsih, E. S. (2018). Penerapan Metode Support Vector Machine ( SVM ) Dalam Klasifikasi Kualitas Pengelasan Smaw ( Shield Metal Arc Welding ). Ilmiah Edutic, 5(1), 17–25.

Socheh, M., Haryoko, I., Priyono, A., H.Purwaningsih, & G.R.Ayatullah. (2020). Penyusutan Bobot Badan Dan Frekuensi Respirasi Bangsa Sapi Yang Berbeda Berbasis Transportasi. Prosiding …, 337–343. http://jnp.fapet.unsoed.ac.id/index.php/psv/article/view/575

Sedarmayanti, 2009, Sumber Daya Manusia dan Produktivitas Kerja, CV Mandar Maju. Bandung

Schwartzkopf-Genswein, K., Ahola, J., Edwards-Callaway, L., Hale, D., & Paterson, J. (2016). SYMPOSIUM PAPER: Transportation issues affecting cattle well-being and considerations for the future. Professional Animal Scientist, 32(6), 707–716. https://doi.org/10.15232/pas.2016-01517

Transportasi, S., Ternak, P., Dan, S., Kebijakan, I., & Indonesia, D. I. (2017). Sistem Transportasi Perdagangan Ternak Sapi dan Implikasi Kebijakan di Indonesia. Sistem Transportasi Perdagangan Ternak Sapi Dan Implikasi Kebijakan Di Indonesia, 2(1), 37–53. https://doi.org/10.21082/akp.v2n1.2004.37-53

Thodberg, K., Gould, L. M., Støier, S., Anneberg, I., Thomsen, P. T., & Herskin, M. S. (2019). Experiences and opinions of Danish livestock drivers transporting sows regarding fitness for transport and management choices relevant for animal welfare. Translational Animal Science, 4(2), 1070–1081. https://doi.org/10.1093/tas/txaa015

Trisiana, A. F., Destomo, A., & Mahmilia, F. (2021). Pengangkutan Ternak : Proses, Kendala dan Pengaruhnya pada Ruminansia Kecil. Wartazoa, 31(1), 43–53.

Published
2022-12-05
How to Cite
Maulana, R., Jaman, J., & Primajaya, A. (2022). Klasifikasi Pemilihan Sopir Pengangkut Ruminansia Besar (Sapi) dengan Algoritma Support Vector Machine (SVM). Jurnal Ilmiah Wahana Pendidikan, 8(23), 281-294. https://doi.org/10.5281/zenodo.7397350

Most read articles by the same author(s)