Vehicle Speed Control System Based on Weather Conditions in the Karawang Region Using Fuzzy Logic Method

  • Habib Alhamdi Putra Universitas Singaperbangsa Karawang
  • Lela Nurpulaela Universitas Singaperbangsa Karawang
Keywords: vehicle speed control system, fuzzy logic method, Karawang region, weather conditions

Abstract

Motor vehicles operating on highways can encounter varying weather conditions such as rain, fog, or other adverse weather conditions. Poor weather conditions can significantly affect safety and travel efficiency. Therefore, in this research, we propose a vehicle speed control system that can adjust the speed based on the prevailing weather conditions in the Karawang region. The method employed in this study is Fuzzy Logic. Fuzzy Logic is a control method that allows us to describe the uncertainty and ambiguity associated with complex problems like weather conditions. By utilizing Fuzzy Logic, we can mathematically represent linguistic variables such as "temperatur," and "cloud cover." The proposed vehicle speed control system receives input in the form of weather data from weather sensors installed in the vehicle. This weather data is then processed using predefined rules based on expert knowledge regarding safe speeds under specific weather conditions. The system then generates an output, recommending the appropriate speed for the current weather conditions. To evaluate the system's performance, we conducted simulations using historical weather data from the Karawang region. The simulation results demonstrate that the vehicle speed control system based on weather conditions using the Fuzzy Logic method can effectively adjust the vehicle's speed to match the current weather conditions. By adopting this system, it is expected to enhance driving safety and travel efficiency in the Karawang region

References

A. Rokhman, D. Putri, and S. D. S. (2022). Analisis Ruas Jalan Nasional Klari Kabupaten Karawang Menggunakan Metode MKJI 1997. J. Forum Mek, 11, no. 1.

Apriyanto, R. A. N., Samudra, D. I., Yudhiatama, G. D., Al, J., Mustofa, N., Nugraheny, S. F., & Huda, Z. C. (2022). Perbandingan Simulasi Kontrol Kecepatan Kereta Api Dengan Logika Fuzzy Metode Mamdani dan Sugeno Comparison of Train Speed Control Simulation with Fuzzy Logic Mamdani and Sugeno Methods. 10(1).

Marolli. (n.d.). Setiap jam rata-rata 3 orang meninggal akibat kecelakaan jalan di Indonesia. Kementrerian Komunikasi Dan Informatika Republik Indonesia. https://www.kominfo.go.id/content/detail/10368/rata-rata-tiga-orang-meninggal-setiap-jamakibat-kecelakaan-jalan/0/artikel_gpr

Nasir, J., Suprianto, J., Studi, P., Informatika, T., & Putera, U. (2017). Analisis Fuzzy Logic Menentukan. Jurnal Edik Informatika, 2, 177–186.

PUBLIK, B. K. D. I. (2020). Di Tengah Pandemi, Kemenhub Terus Tingkatkan Kesadaran Keselamatan JalantleNo Title. Kementrerian Perhubungan Republik Indonesia. http://dephub.go.id/post/read/di-tengah-pandemi,-kemenhub-terus-tingkatkan-kesadaran-keselamatan-jalan?language=en

Satria, D., Listijorini, E., Nurghodan, M. R., Mesin, J. T., Teknik, F., Sultan, U., & Tirtayasa, A. (2015). Perancangan Sistem Kendali Suhu Pada Mesin Pengering. Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 3(2), 179–185.

Sitohang, S., & Denson Napitupulu, R. (2017). Fuzzy Logic Untuk Menentukan Penjualan Rumah Dengan Metode Mamdani (Studi Kasus: Pt Gracia Herald). Jurnal ISD, 2(2), 91–101.

Published
2023-11-12
How to Cite
Putra, H., & Nurpulaela, L. (2023). Vehicle Speed Control System Based on Weather Conditions in the Karawang Region Using Fuzzy Logic Method. Jurnal Ilmiah Wahana Pendidikan, 9(22), 492-501. https://doi.org/10.5281/zenodo.10115528

Most read articles by the same author(s)