Penentuan Metode Terbaik Analisis Sentimen Pada Twitter Pelanggaran Hukum (Korupsi Dan Pajak)

  • Faradilla Izzah Rahmadani Universitas Sebelas Maret
  • Rizki Rahmawati Universitas Sebelas Maret
Keywords: sentiment analysis, violation of law, navie bayes, random forest, support vector machine

Abstract

A lot of topics are discussed on social media. One of the topics discussed about Twitter is violations of law in Indonesia such as corruption and taxes. Sentiment analysis is the process of extracting, understanding, and processing unstructured data to obtain sentiment information found in opinion sentences. This study was conducted to analyze public opinion towards the violation of law on the social media Twitter uses sentiment analysis. A total of 14,446 data were divided into 80% training data and 20% testing data then classified using Naive Bayes, Random Forest, and Support Vector Machine (SVM) algorithms. The calculation results show positive sentiment of 16,3%, negative sentiment of 52,3%, and neutral sentiment of 31,4%. The comparison of the three algorithms obtained using SVM algorithm gets the highest accuracy of 72%.

References

DataIndonesia.id. (2023). Indonesia Masuk Negara Paling Banyak Main Twitter pada Awal 2023. Dikutip dari DataIndonesia.id pada 19 Juni 2023 https://dataindonesia.id/internet/detail/indonesia-masuk-negara-paling-banyak-main-twitter-pada-awal-2023

Isnain, A.R., Marga, N.S., Alita, D. (2021). Sentiment Analysis of Government Policy on Corona Case Using Naive Bayes Algorithm. Indonesian Journal of Computing and Cybernetics Systems. 15(1), 55-64.

Liu, B. (2012) Sentiment Analysis and Opinion Mining (Synthesis Lectures on Human Language Technologies). Morgan & Claypool Publishers, Vermont, Australia.

Pratiwi, R.W., H, S.F., Dairoh, D., Af’idah, D.I., A, Q.R., & F, A.G. (2021). Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM). Journal of Informatics, Information System, Software Engineering and Applications (INISTA). 1(1), 40-46.

Suyanto. (2018). Machine Learning Tingkat Dasar dan Lanjut. Bandung: Informatika Bandung.

Wicaksono, M.H. (2022). Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily. Skripsi. Fakultas Informatika Universitas Telkom, Bandung.

Widowati, T.T & Sadikin, M. (2020). Analisis Sentimen Twitter Terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine. Jurnal SIMETRIS. 11(2), 626-636.

Published
2023-09-03
How to Cite
Rahmadani, F., & Rahmawati, R. (2023). Penentuan Metode Terbaik Analisis Sentimen Pada Twitter Pelanggaran Hukum (Korupsi Dan Pajak). Jurnal Ilmiah Wahana Pendidikan, 9(18), 244-250. https://doi.org/10.5281/zenodo.8312289