Analisis Sentimen Data Twitter Topik Politik Dengan Metode Naive Bayes Dan Convolutional Neural Networks (Cnn)

  • Adit Permana Putra Universitas Sebelas Maret
  • Aurelia Farrah Syafira Universitas Sebelas Maret
Keywords: sentiment analysis, naive bayes, convolutional neural networks, politics

Abstract

Sentiment analysis is a method used to identify, derive, and evaluate sentiments, opinions, or emotions contained in text. In the context of political topics, sentiment analysis can help understand public views and attitudes towards issues, presidential elections, presidential candidates, parties, etc. This information is valuable for decision makers, including the government, in the image of political figures and political life in Indonesia. This information is invaluable for decision makers, including the government, in the image of political figures and political life in Indonesia-data retrieval, data labeling, data pre-processing, data extraction, CNN classification, and naive bayes This shows that the accuracy value of the label between the negative and the requested information gives a greater true negative value than other sentiments. The large percentage recall value found in Naive Bayes with negative sentiment proves that, the ability of the model the number of correct ones is 0.95. Meanwhile, the highest percentage value of f1-score is obtained in Naive Bayes with a value of 0.81. Naive Bayes obtained an accuracy of 0.69 while CNN obtained an accuracy of 0.68. The above results show that there is a fairly thin difference in the accuracy obtained. So it can be concluded that the two models above for twitter sentiment analysis on political topics are good enough to use the above methods.

References

Apriani, R., & Gustian, D. (2019). Analisis Sentimen dengan Naïve Bayes terhadap Komentar Aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54-62.

Bird, S., Klein, E., & Loper, E. (2020). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O'Reilly Media.

Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional. TEKNO KOMPAK Journal, 15(1), 131-145. P-ISSN: 1412-9663, E-ISSN: 2656-3525.

Pak, A., & Parvez, M. T. (2020). Sentiment Analysis of Twitter Data Using Naive Bayes Classifier. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.

Qudsi, D. H., Lubis, J. H., Syaliman, K. U., & Najwa, N. F. (2021). Analisis Sentimen Pada Data Saran Mahasiswa Terhadap Kinerja Departemen Di Perguruan Tinggi Menggunakan Sentiment Analysis In The Student’s Reviews Of College Department Performance Using. Jurnal Teknologi Informasi Dan Ilmu Komputer(JTIIK), 8(5), 1067–1076. https://doi.org/10.25126/jtiik.202184842

Pradana, M.G. (2020). PENGGUNAAN FITUR WORDCLOUD DAN DOCUMENT TERM MATRIX DALAM TEXT MINING. Jurnal Ilmiah Informatika (JIF), 8(1), 38-43. P-ISSN : 2337-8379, E-ISSN: 2615-1049.

Irawan, F.A., Rochmah, D.A. (2022). Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19. JURNAL INFORMATIKA, 9(2), 148-158, P-ISSN: 2355-6579, E-ISSN: 2528-2247.

Published
2023-10-01
How to Cite
Putra, A., & Syafira, A. (2023). Analisis Sentimen Data Twitter Topik Politik Dengan Metode Naive Bayes Dan Convolutional Neural Networks (Cnn). Jurnal Ilmiah Wahana Pendidikan, 9(20), 36-41. https://doi.org/10.5281/zenodo.8396579