Pendugaan Bobot Sapi Menggunakan Algoritma Convolutional Neural Network Melalui Dimensi Ukuran Tubuh

  • Nurhidayat Nurhidayat Universitas Singaperbangsa Karawang
  • Jajam Haerul Jaman Universitas Singaperbangsa Karawang
Keywords: Cattle Weight,, Modeling,, Body Size Dimensions,, Convolutional Neural Network, Estimation

Abstract

The cattle population in Indonesia reaches around 18 million heads, with the majority coming from small and medium farms. The weight of the cow has an important role in determining the selling price, but small farmers often find it difficult to weigh the cattle accurately. One of the main challenges is the limitations of conventional scales. Therefore, in this study proposed a model for estimating the weight of cattle based on the dimensions of body size, namely body length and chest circumference. The body size data of the cows were taken from the Purwakarta Cattle Market UPTD, as a representation of field conditions. Modeling uses a Convolutional Neural Network (CNN) which has the ability to recognize patterns in data. This model is trained using body size data to predict cattle weight with high accuracy. The results showed that the proposed prediction model was able to provide an accurate prediction of cattle weight based on body size dimensions. In testing, the model managed to provide an estimate that is close to the true value. This modeling can be a practical solution for small farmers who have difficulty weighing cattle accurately, especially in market conditions that have limited facilities. This modeling approach opens up new opportunities in the management of livestock and the agricultural industry in general. A model for estimating cattle weight based on dimensions of body size can assist farmers in determining the selling price of cattle more accurately and efficiently, as well as making a positive contribution to increasing the productivity and welfare of livestock in Indonesia.

References

Abdulhakim, R., Carudin, & Dermawan, B. A. (2021). Analisis dan Penerapan Algoritma Convolutional Neural Network untuk Klasifikasi Kendaraan Prioritas. Jurnal Sains dan Informatika.

Abhirawa, H., Jondri, & Arifianto, A. (2017). Pengenalan Wajah Menggunakan Convolutional Neural Network. e-Proceeding of Engineering.

Alwanda, M. R., Ramadhan, R. K., & Alamsyah, D. (2020). Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle. Jurnal Algoritme.

Badrul, M. (2013). Penerapan Metode Neural Network Untuk Memprediksi Hasil Pemilu Legislatif. Techno Nusa Mandiri.

Danukusumo, & Pudi, K. (2017). Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Citra Candi Berbasis Gpu. Editor UAJY.

Felix, Wijaya, J., Sutra, S. P., Kosasih, P. W., & Sirait, P. (2020). Implementasi Convolutional Neural Network Untuk Identifikasi Jenis Tanaman Melalui Daun. SIFO Mikroskil.

Gjergji, M., Weber, V. d., Silva, L. O., & Gomes, R. d. (2020). Deep Learning Techniques for Beef Cattle Body Weight Prediction. IEEE Xplore.

Halimi, I., Azhar, Y., & Marthasari, G. I. (2019). Prediksi Harga Emas Menggunakan Univariate Convolutional Neural Network. Repositor.

Hendriyana, & Maulana, Y. H. (2020). Identifikasi Jenis Kayu menggunakan Convolutional Neural Network dengan Arsitektur Mobilenet. Jurnal Resti.

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine Learning and Deep Learning. Fundamentals.

Juneja, S., Juneja , A., Dhiman, G., Behl, S., & Kautish, S. (2021). An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks. Hindawi.

Kurniadi, F. I., Putri, V. K., & Wibawa, Y. E. (2021). Klasifikasi Topeng Cirebon Menggunakan Metode Convolutional Neural Network. Jurnal Teknik Informatika dan Sistem Informasi.

Kusumaningrum, T. F. (2018). Implementasi Convolution Neural Network (CNN) Untuk Klasifikasi Jamur Konsumsi Di Indonesia Menggunakan Keras. Universitas Islam Indonesia Yogyakarta.

Lin, W., Hasenstab, K., Cunha, G. M., & Schwartzman, A. (2020). Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment. Scientific Reports.

Madvari, R. F. (2022). Artificial Intelegence (AI), Machine Learning (ML) and Deep Learning (DL) on Health, Safety and Environment (HSE). Editorial.

Ni’am, H., Purnomoadi, A., & Dartosukarno, S. (2012). Hubungan Antara Ukuran-Ukuran Tubuh Dengan Bobot Badan Sapi Bali Betina Pada Berbagai Kelompok Umur. Animal Agriculture Journal.

Paraijun, F., Aziza, R. N., & Kuswardani, D. (2022). Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah. Kilat.

Parwita, I. M., & Siahaan, D. (2019). Classification of Mobile Application Reviews using Word Embedding and Convolutional Neural Network. Lontar Komputer.

Pham, D. (2020). A comprehensive study on classifcation of COVID 19 on computed tomography with pretrained convolutional neural networks. Scientific Reports.

Putra, A., Rusdhi, A., & Gunawan, F. (2020). Penentuan Bobot Badan Sapi Peranakan Ongole (PO) Jantan Berdasarkan Profil Body Condition Score (BCS) Di Kecamatan Hamparan Perak Kabupaten Deli Serdang. Scenario.

Ramdhan, N. A. (2019). Penerapan Metode Neural Network Untuk Prediksi Nilai Ujian Nasional (Study Kasus Di Smk Muhammadiyah Slawi). Jurnal Ilmiah Indonesia.

Rismiyati. (2016). Implementasi Convolutional Neural Network untuk Sortasi Salak . Yogyakarta : Universitas Gadjah Mada.

Saraiva, A. A., Ferreira, N. F., Lopes de Sousa, L., Costa, N. C., Sousa, J. J., Santos, D. B., . . . Soares, S. (2019). Classification of Images of Childhood Pneumonia using Convolutional Neural Networks. Scitepress.

Sena, S. (den 27 Mei 2018). Pengenalan Deep Learning Part 1 : Neural Network. Hämtat från medium.com: https://medium.com/@samuelsena/pengenalan-deep-learning-8fbb7d8028ac

Sena, S. (den 27 Mei 2018). Pengenalan Deep Learning Part 7 : Convolutional Neural . Hämtat från medium.com: https://medium.com/@samuelsena/pengenalan-deep-learning-part-7-convolutional-neural-network-cnn-b003b477dc94

Shafira, T. (2018). Implementasi Convolutional Neural Networks Untuk Klasifikasi Citra Tomat Menggunakan Keras. Universitas Islam Indonesia Yogyakarta.

Shen, Z., & Rossel, R. V. (2021). Automated spectroscopic modelling with optimised convolutional neural networks. Scientific Repoets.

Suartika, I. W., Wijaya, A. Y., & Soelaiman, R. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101. Jurnal Teknik ITS.

Sunghwan, Gujrathi, I., Haider, M. A., & Khalvati, F. (2019). Prostate Cancer Detection using Deep Convolutional Neural Networks. Scientific Reports.

Tanari, M., Duma, Y., Rusiyantono, Y., & Mangun, M. (2011). Dinamika Populasi Sapi Potong Di Kecamatan Pamona Utara Kabupaten Poso. J. Agrisains.

Published
2024-02-12
How to Cite
Nurhidayat, N., & Jaman, J. (2024). Pendugaan Bobot Sapi Menggunakan Algoritma Convolutional Neural Network Melalui Dimensi Ukuran Tubuh. Jurnal Ilmiah Wahana Pendidikan, 10(3), 640-650. https://doi.org/10.5281/zenodo.10642689