Clustering Tingkat Kedisiplinan Warga Bekasi Dalam Menjalankan Protokol Kesehatan Di Masa Pandemi Covid-19 Dengan Algoritme K-Means

  • Andri Dwi Noviandi Universitas Singaperbangsa Karawang
  • Tesa Nur Padillah Universitas Singaperbangsa Karawang
  • Yuyun Umaidah Universitas Singaperbangsa Karawang

Abstract

           Health protocols during the Covid-19 pandemic are very necessary because health protocols can speed up breaking the chain of spreading the Covid-19 virus. Violations that are often found in the Bekasi city environment are related to health protocols, namely maintaining distance, wearing masks and washing hands, or using hand sanitizer. There are still many who do not comply with the rules of the health protocol. The purpose of knowing the cluster level of discipline towards health protocols into five clusters spread by the number of respondents in various sub-districts in the city of Bekasi with the categories of discipline, somewhat disciplined, rarely disciplined, less disciplined, and undisciplined. Data mining is the process of extracting data to obtain new information. The technique used in this research is simple random sampling. This study using the CRIPS-DM methodology. This study calculates the k-means algorithm by obtaining a value of k = 2. The results of the test using the RapidMiner Studio 9.3 tools obtained two clusters or 2 categories of discipline levels against health protocols, namely cluster 0 with a percentage of 55.08% which is categorized as the most disciplined level, and cluster 1 with a percentage of 44.92% which is categorized as the least disciplined level. The results of clustering are evaluated by using the Silhouette Coefficient with the best cluster, k = 2 with a value of 0.926989, which is the best cluster.

References

Abadi, S., The, K, S, M., Mohd. Nasir, B., Huda, M., L. Ivanova, N., Sari, T, I., Maseleno, A. Satria, F., Muslihudin, M. (2018) Application Model of K-means Clustering: Insights into Promotion Strategy of Vocational High School. International Journal of Engineering and Technology, 7(27), hal. 182–187.

Asroni, H. Fitri, E.Prasetyo. (Mei 2018). Penerapan Metode Clustering dengan Algoritma K-means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). SEMESTA TEKNIKA, Vol. 21. No. 1, 60-64.

Arieska, P. K., & Herdiani, N. (2018). Pemilihan Teknik Sampling Berdasarkan Perhitungan Efisiensi Relatif. Jurnal Statistika Universitas Muhammadiyah Semarang, 6(2). 166-171.

Darmi, Yulia., & Setiawan, A. (2016). Penerapan Metode Clustering K-means Dalam Pengelompokan Penjualan Produk. Jurnal Media Infotama. 2(12). 148-157.

Fadillah, A. P. (2015). Penerapan Metode CRISP-DM untuk Prediksi Kelulusan Studi Mahasiswa Menempuh Mata Kuliah (Studi Kasus Universitas XYZ). JuTISI (Jurnal Teknik Informatika dan Sistem Informasi), 1(3).

G.D.Rembulan, T.Wijaya, D.Palullungan, K.N.Alfina, dan M.Qurthuby. (2020). Kebijakan Pemerintah Mengenai Coronavirus Disease (COVID-19) Di Setiap Provinsi Di Indonesia Berdasarkan Analisis Klaster. Journal of Industrial Engineering and Management Systems, Vol. 13, No. 2, 74-86.

Hafeez, A., Ahmad, S., Siddqui, S, A., Ahmad, M., Mishra, S. (2020). A Review of COVID-19 (Coronavirus Disease-2019) Diagnosis, Treatments and Prevention. Eurasian Journal of Medicine and Oncology, 4(2), hal. 116–125.

J.Han., M. Kamber., J. Pei. (2012). “Data Mining Concecpts and Techniques Third Edition”. San Fransisco: Morgan Kauffman Publisher.

Larose, D.T. (2005). Discovering knowledge in data: an introduction to data mining. John Willey & Sons, Inc.

Liyas, J. N., & Primadi, R. (2017). Pengaruh disiplin kerja terhadap kinerja karyawan pada bank perkreditan rakyat. Al-Masraf: Jurnal Lembaga Keuangan dan Perbankan, 2(1), 17-26.

Menteri Kesehatan Republik Indonesia. (2020). Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/382/2020 Tentang Protokol Kesehatan Bagi Masyarakat di Tempat dan Fasilitias Umum Dalam Rangka Pencegahan dan Pengendalian Corona Virus Disease 2019 (COVID 19), Jakarta: Departemen Kesehatan.

Muliono, R., & Sembiring, Z. (2019). Data mining Clustering Menggunakan Algoritma K-means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen. CESS (Journal of Computer Engineering, System and Science), 4(2), 272-279.

Pramesti, D. F., Furqon, M. T. dan Dewi, C. (2017) “Implementasi Metode KMedoids Clustering Untuk Pengelompokan Data,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 1(9), hal. 723–732.

Shafique, U., & Qaiser, A. (2014). A Comparative Study of Data mining Process Models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research. 12(1). 217-222

Siska, S. T. (2016). Analisa Dan Penerapan Data mining Untuk Menentukan Kubikasi Air Terjual Berdasarkan Pengelompokan Pelanggan Menggunakan Algoritma K-means Clustering. Jurnal Teknologi Informasi dan Pendidikan, 9(1), 86-93.

Sindi, S., Ningse, W. R. O., Sihombing, I. A., Zer, F. I. R., & Hartama, D. (2020). Analisis algoritma k-medoids clustering dalam pengelompokan penyebaran covid-19 di indonesia. JurTI (Jurnal Teknologi Informasi), 4(1), 166-173.

Shen, K., Yang, Y., Wang, T., Zhao, D., Jiang, Y., Jin, R., ... & Gao, L. (2020). Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World journal of pediatrics, 16(3), 223-231.

Published
2021-08-30
How to Cite
Noviandi, A., Padillah, T., & Umaidah, Y. (2021). Clustering Tingkat Kedisiplinan Warga Bekasi Dalam Menjalankan Protokol Kesehatan Di Masa Pandemi Covid-19 Dengan Algoritme K-Means. Jurnal Ilmiah Wahana Pendidikan, 7(4), 681-688. https://doi.org/10.5281/zenodo.5336446