Pengaruh Biomassa Terhadap Efisiensi Boiler Pada Pembangkit CFB Batubara Dalam Sistem Co-firing

  • Kawiarso Kawiarso Universitas Sultan Ageng Tirtayasa Banten
  • Nuryoto Nuryoto Universitas Sultan Ageng Tirtayasa
  • Anton Irawan Universitas Sultan Ageng Tirtayasa
Keywords: Biomassa, Boiler CFB, Cofiring, PKS

Abstract

The issue of global warming has gained widespread attention around the world. Warming of the atmosphere as a whole can be attributed mostly to the accumulation of more greenhouse gases (GHG). Coal is commonly used as a fuel source in steam power plants (PLTU), which results in a substantial CO2 gas emission when burned. Cofiring is a technology that allows palm shell biomass to be used as a fuel source in place of coal, which helps reduce greenhouse gas emissions and so slows down global warming. Cofiring trials including palm kernel shells (PKS, Palm Kernel Shell) are being conducted by PT. XYZ in Ciwandan, starting with 33% PKS, 67% PKS, and finally 100% PKS fuel. The examination of generation 2's performance looks at the impact of using coal fuel with cofiring palm shell biomass at the percentage stage. After using the indirect approach (ASME PTC-4), we find that while using coal as fuel, the boiler efficiency (HHV) is 86.27%, however when using PKS, it is only 83.33%. The boiler efficiency (HHV) is 86.30% when using PKS at a 33% cofiring ratio, and it drops to 83.62% when using PKS at a 67% cofiring ratio. It can be theoretically construed as a boiler because the efficiency increases with the use of 100% PKS fuel are still near to the efficiency of the boiler design (HHV = 89.39), and the effect of using biomass does not significantly affect the boiler's efficiency. which can now be used for combustion when fueled only by PKS biomass.

References

Ayodele, O. F., Ayodele, B. V., Mustapa, S. I., & Fernando, Y. (2021). Effect of activation function in modeling the nexus between carbon tax, CO2 emissions, and gas-fired power plant parameters. Energy Conversion and Management: X, 12, 100111. https://doi.org/10.1016/j.ecmx.2021.100111

Babatunde, D. E., Anozie, A. N., Omoleye, J. A., Oyebode, O., Babatunde, O. M., & Agboola, O. (2020). Prediction of global warming potential and carbon tax of a natural gas-fired plant. Energy Reports, 6, 1061–1070. https://doi.org/10.1016/j.egyr.2020.11.076

Basu, P. (2015). Circulating fluidized bed boilers: Design, operation and maintenance. In Circulating Fluidized Bed Boilers: Design, Operation and Maintenance. https://doi.org/10.1007/978-3-319-06173-3

De, S., & Assadi, M. (2009). Impact of cofiring biomass with coal in power plants - A techno-economic assessment. Biomass and Bioenergy, 33(2), 283–293. https://doi.org/10.1016/j.biombioe.2008.07.005

Fadli, M., Kamal, D. M., & Adhi, P. M. (2019). Analisis Swot Untuk Direct Co-Firing Batubara Dengan Pellet Sampah Pada Boiler Tipe Cfbc. Jurnal Poli-Teknologi, 18(3), 271–280. https://doi.org/10.32722/pt.v18i3.2391

Harjanto, T. R., Fahrurrozi, M., & Made Bendiyasa, I. (2012). Life Cycle Assessment Pabrik Semen PT Holcim Indonesia Tbk. Pabrik Cilacap: Komparasi antara Bahan Bakar Batubara dengan Biomassa. Jurnal Rekayasa Proses, 6(2), 51.

Harnowo, S., & Yunaidi, Y. (2021). Kinerja Boiler dengan Sistem Pembakaran Bersama antara Ampas Tebu dengan Sekam Padi dan Cangkang Kelapa Sawit. Semesta Teknika, 24(2), 102–110. https://doi.org/10.18196/st.v24i2.12937

Loha, C., Karmakar, M., Chattopadhyay, H., & Majumdar, G. (2019). Renewable Biomass: A Candidate for Mitigating Global Warming. https://doi.org/10.1016/B978-0-12-803581-8.11020-3

Nuraini, & Lubis, E. (2005). Kontribusi pembangkit Energi Listrik terhadap Efek Rumah Kaca. Pusat Penelitian Ilmu Pengetahuan Dan Teknologi, 41(2), 141–149.

Parinduri, L., & Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. Journal of Electrical Technology, 5(2), 88–92. https://www.dosenpendidikan.

Samidjo, J., & Suharso, Y. (2017). Memahami Pemanasan Global dan Perubahan Iklim. Online Journal Od Ivet University, 24(2), 36–46.

Sarofim, M. C., & Giordano, M. R. (2018). A quantitative approach to evaluating the GWP timescale through implicit discount rates. Earth System Dynamics, 9(3), 1013–1024. https://doi.org/10.5194/esd-9-1013-2018

Satria, H., Haddin, M., & Nugroho, A. A. (2021). Metode Direct Untuk Mengetahui Net Plant Heat Rate Unit #10 Pltu Rembang Ketika Simple Inspection Unit #20. Media Elektrika, 14(1), 42. https://doi.org/10.26714/me.14.1.2021.42-52

Suganal, S., & Hudaya, G. K. (2019). Bahan bakar co-firing dari batubara dan biomassa tertorefaksi dalam bentuk briket (Skala laboratorium). Jurnal Teknologi Mineral Dan Batubara, 15(1), 31–48. https://doi.org/10.30556/jtmb.vol15.no1.2019.971

Sugiyono, A. (2006). Penanggulangan Pemanasan Global Di Sektor Pengguna Energi. Jurnal Sains & Teknologi Modifikasi Cuaca, 7(April), 15–19.

Tampubolong, A. P. (2013). Kajian Kebijakan Energi Biomass kayu bakar. Puslitbang Hasil Hutan Bogor, V, 29–37.

Tillman, D. A. (2000). Biomass cofiring: The technology, the experience, the combustion consequences. Biomass and Bioenergy, 19(6), 365–384. https://doi.org/10.1016/S0961-9534(00)00049-0

Verma, M., Loha, C., Sinha, A. N., & Chatterjee, P. K. (2017). Drying of biomass for utilising in co-firing with coal and its impact on environment – A review. Renewable and Sustainable Energy Reviews, 71(December 2016), 732–741. https://doi.org/10.1016/j.rser.2016.12.101

Wang, X., Hu, Z., Deng, S., Xiong, Y., & Tan, H. (2014). Effect of biomass/coal co-firing and air staging on NOx emission and combustion efficiency in a drop tube furnace. Energy Procedia, 61, 2331–2334. https://doi.org/10.1016/j.egypro.2014.11.1196

Published
2023-02-09
How to Cite
Kawiarso, K., Nuryoto, N., & Irawan, A. (2023). Pengaruh Biomassa Terhadap Efisiensi Boiler Pada Pembangkit CFB Batubara Dalam Sistem Co-firing. Jurnal Ilmiah Wahana Pendidikan, 9(3), 281-296. https://doi.org/10.5281/zenodo.7625148