A Comprehensive Review on Atomic Absorption Spectroscopy: Principles, Techniques, and Applications

  • Eka Putri Maharani Universitas Negeri Semarang
  • Hasnaa Briliana Universitas Negeri Semarang
  • Elisabeth Hanindita Putri Universitas Negeri Semarang
  • Felicia Stella Faraditta Universitas Negeri Semarang
  • Amalia Rizqi Az-zhaffirah Universitas Negeri Semarang
Keywords: atomic absorption spectroscopy, atomization, instrumentation, principle, interferences

Abstract

Atomic Absorption Spectroscopy (AAS) is a chemical analysis equipment that works on the premise of atoms absorbing energy. Atomic spectrometry is a method of measuring spectrum that is related to absorption and atomic emission. Atomic absorption spectrometry (AAS) is a technology that uses free gaseous atoms to absorb electromagnetic radiation at a given wavelength and generate a quantifiable signal. Atomic absorption spectrophotometry is a technique of quantitative elemental evaluation whose size is primarily based totally at the absorption of mild at positive wavelengths via way of means of metallic atoms in a loose state. Atomic absorption spectrophotometry has an instrument that is arguably similar to other types of spectrophotometry but atomic absorption spectrophotometry has a distinctive feature in instrumentation, namely the atomizer. This atomizer will absorb the wavelength directly proportional to Lambert's law. Atomization in atomic absorption spectrophotometry is divided into 3: Atomization with Flame, Vapor Generation Method, Furnace atomization. Interferences in AAS can be categorized into two general groups: spectral and non-spectral. Atomic Absorption Spectroscopy (AAS) stands as a pivotal analytical technique employed across diverse industries, playing a crucial role in the identification and quantification of metallic elements present in a given sample. In the future, AAS could be further developed and improved for applications in various fields.

References

Sugito S. Uji Kinerja Instrumen Spektrofotometer Serapan Atom (AAS) Shimadzu 6650 F Terhadap Logam Fe, Zn pada Kegiatan Praktikum Kimia Anorganik di UPT Laboratorium Terpadu UNS. Indonesian Journal of Laboratory. 2022;5(2):83-89. doi:10.22146/ijl.v5i2.75876

Paudel S, Kumar S, Mallik A. Atomic Absorption Spectroscopy: A Short Review. EPRA International Journal of Research & Development (IJRD). 2021;6(9):322-327.

Fernández B, Lobo L, Pereiro R. Atomic Absorption Spectrometry: Fundamentals, Instrumentation and Capabilities. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier; 2018. doi:10.1016/B978-0-12-409547-2.14116-2

Resano M, Aramendía M, Belarra MA. High-resolution continuum source graphite furnace atomic absorption spectrometry for direct analysis of solid samples and complex materials: a tutorial review. J Anal At Spectrom. 2014;29(12):2229-2250. doi:10.1039/C4JA00176A

Gunanjar. Spektrofotometri Serapan Atom Diktat Keahlian Analisis Kimia Bahan Bakar Nuklir. Batan; 1997.

Gupta HK, Roy S. Geothermal Energy: An Alternative Resource for the 21st Century. Elsevier; 2007. doi:10.1016/B978-0-444-52875-9.X5000-X

Khopkar SM. Konsep Dasar Kimia Analitik. Universitas Indonesia Press; 1990.

Supriyanto, Samin, Kamal Z. Analisis Cemaran Logam Berat Pb, Cu dan Cd Pada Ikan Air Tawar Dengan Metode Spektrometri Nyala Serapan Atom (SSA). Prosiding Seminar Nasional III SDM Teknologi Nuklir. Published online 2007.

Natsir M. Spektrofotometri Serapan Atom. Syiah Kuala University Press; 2019.

Yu W. Instrumentation of Atomic Absorption Spectrophotometry and its Applications. J Pharm Anal. 2022;11(5):3-4.

Yeung V, Miller DD, Rutzke MA. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry. In: ; 2017:129-150. doi:10.1007/978-3-319-45776-5_9

Hill SJ, Fisher AS. Atomic Absorption, Methods and Instrumentation. In: Encyclopedia of Spectroscopy and Spectrometry. Elsevier; 2017:37-43. doi:10.1016/B978-0-12-803224-4.00099-6

Chauhan A, Mittu B. Various Types of Interferences during Sample Analysis in Atomic Absorption Spectrometry. J Text Sci Eng. 2014;04(06). doi:10.4172/2165-8064.1000176

Maessen FJMJ, Balke J, Massee R. Non-spectral interferences in flameless atomic absorption spectrometry using graphite mini-tube furnaces. Spectrochim Acta Part B At Spectrosc. 1978;33(7):311-324. doi:10.1016/0584-8547(78)80008-1

López Ó, Padrón JM. Iridium- and Palladium-Based Catalysts in the Pharmaceutical Industry. Catalysts. 2022;12(2):164. doi:10.3390/catal12020164

Bubnič Z, Urleb U, Kreft K, Veber M. The application of atomic absorption spectrometry for the determination of residual active pharmaceutical ingredients in cleaning validation samples. Drug Dev Ind Pharm. 2011;37(3):281-289. doi:10.3109/03639045.2010.509726

Borges AR, Bazanella DN, Duarte ÁT, Zmozinski A V., Vale MGR, Welz B. Development of a method for the sequential determination of cadmium and chromium from the same sample aliquot of yerba mate using high-resolution continuum source graphite furnace atomic absorption spectrometry. Microchemical Journal. 2017;130:116-121. doi:10.1016/j.microc.2016.08.010

Fouad HK, Elrakaiby RM, Hashim MD. The Application of Flame Atomic Absorption Spectrometry for Gold Determination in Some of Its Bearing Rocks. Am J Analyt Chem. 2015;06(05):411-421. doi:10.4236/ajac.2015.65040

Behari JR, Prakash R. Determination of total arsenic content in water by atomic absorption spectroscopy (AAS) using vapour generation assembly (VGA). Chemosphere. 2006;63(1):17-21. doi:10.1016/j.chemosphere.2005.07.073

Rohman A, Wijayanti E. Development and validation of atomic absorption spectrometry for the determination of zink and mercury analyzer for determination of Mercury in cream cosmetics. Journal of Food and Pharmaceutical Sciences. 2015;3(2):23-26.

Ye J, Zheng M, Ma H, et al. Development and Validation of an Automated Magneto-Controlled Pretreatment for Chromatography-Free Detection of Aflatoxin B1 in Cereals and Oils through Atomic Absorption Spectroscopy. Toxins (Basel). 2022;14(7):454. doi:10.3390/toxins14070454

Ferreira BL, Vitali L, Chaves ES. Exploring the Versatility of an Atomic Absorption Spectrometer: Application to Direct Molecular Determination of Caffeine and Propranolol. J Braz Chem Soc. Published online 2015. doi:10.5935/0103-5053.20150312

Volchenkova VA, Kazenas EK, Kuvshinova EA, et al. Application of atomic absorption spectroscopy method for platinum content determination to study functionalization of bone substitute materials with anticancer drug. J Phys Conf Ser. 2019;1347(1):012086. doi:10.1088/1742-6596/1347/1/012086

Siva Sai Kiran B, Raja S. Method Development and Validation for the Estimation of Magnesium Content in Esomeprazole Magnesium by Atomic Absorption Spectrophotometer. Oriental Journal of Chemistry. 2018;34(1):502-506. doi:10.13005/ojc/340155

Published
2024-08-31
How to Cite
Maharani, E., Briliana, H., Putri, E., Faraditta, F., & Az-zhaffirah, A. (2024). A Comprehensive Review on Atomic Absorption Spectroscopy: Principles, Techniques, and Applications. Jurnal Ilmiah Wahana Pendidikan, 10(15), 20-29. https://doi.org/10.5281/zenodo.13764070