Mini-review: Molecular Targets of Neuromuscular Blocking Agents on Nicotinic Acetylcholine (ACh) Receptor
Abstract
Neuromuscular blocking agents (NMBAs) are the drugs that most frequently involved in IgE-mediated anaphylaxis during anesthesia which can lead to perioperative morbidity and mortality. The nicotinic acetylcholine receptor is an ion channel composed of ligands consisting of 5 protein subunits. Receptors Nicotinic acetylcholine is extensively expressed to include both receptors of heteromeric or homomeric combinations of α2–α10 and β2–β4ubunits and medicines that act as nicotinic acetylcholine receptor blockers. The mesolimbic pathway in the ventral tegmental area (VTA) and nucleus accumbens mediates neuronal excitability and dopamine (DA) neurotransmission through the use of ethanol and nicotinic acid (NAc). Drugs belonging to the nicotinic acetylcholine categories are Sugammadex, Gantacurium, Cyclodextrin, Vecuronium, Pancuronium, Rocuronium, and Edrophonium. Enzyme Cholinesterase is an enzyme that degrades Ach released through the neuromuscular synaptic cleft.
References
Alexandris, N., et al. (2021). Nicotinic cholinergic system and COVID-19: In silico evaluation of nicotinic acetylcholine receptor agonists as potential therapeutic interventions. Toxicology Reports, 8, 73–83. https://doi.org/10.1016/j.toxrep.2020.12.013.
Farsalinos, K., et al. (2020). Nicotinic Cholinergic System and COVID-19: In Silico Identification of an Interaction between SARS-CoV-2 and Nicotinic Receptors with Potential Therapeutic Targeting Implications. International Journal of Molecular Sciences, 21(16), Article 16. https://doi.org/10.3390/ijms21165807.
Ikawati, Z. (2018). Farmakologi Molekuler: Target Aksi Obat Dan Mekanisme Molekulernya. UGM PRESS.
Flores, M. M. (2013). Neuromuscular Blocking Agents and Monitoring in the Equine Patient. Vet Clin Equine 29 (2013) 131–154. http://dx.doi.org/10.1016/j.cveq.2012.11.010.
Knox, H. J., Rego Campello, H., Lester, H. A., Gallagher, T., & Dougherty, D. A. (2022). Characterization of Binding Site Interactions and Selectivity Principles in the α3β4 Nicotinic Acetylcholine Receptor. Journal of the American Chemical Society, 144(35), 16101–16117. https://doi.org/10.1021/jacs.2c06495.
Koga, M., Kanaoka, Y., Tashiro, T., Hashidume, N., Kataoka, Y., & Yamauchi, A. (2018). Varenicline is a smoking cessation drug that blocks alveolar expansion in mice intratracheally administrated porcine pancreatic elastase. Journal of Pharmacological Sciences, 137(2), 224–229. https://doi.org/10.1016/j.jphs.2018.06.007.
Mohamed, M., Abdullah Alghamdi, S., Alquraini, A., Alghamdi, A., M. Shatla, I., El Shorbagi, A. E. N., Chaudhary, S., Aly, O., & Mustafa, M. (2022). Phytochemical and in silico study on Lupinus subcarnosus Hook, its effect on neuronal α4β2 nicotinic acetylcholine receptors (nAChRs) and the major alkaloids. Octahedron Drug Research, 0(0), 0–0. https://doi.org/10.21608/odr.2022.155742.1007.
Parker, HP, Dawson, A., Jones, MJ, Yan, R., Ouyang, J., Hong, R., & Hunter, WN (2022). Delineating the activity of the potent nicotinic acetylcholine receptor agonists (+)-anatoxin-a and (−)-hosieine-A. Acta Crystallographica Section F: Structural Biology Communications, 78 (9), Article 9. https://doi.org/10.1107/S2053230X22007762.
Wang, J., et al. (2020). Promoting activity of (α4)3(β2)2 nicotinic cholinergic receptors reduces ethanol consumption. Neuropsychopharmacology, 45 (2), Article 2. https://doi.org/10.1038/s41386-019-0475-8.
Xiao, C., Zhou, C., Jiang, J., & Yin, C. (2020). Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacologica Sinica, 41 (1), Article 1. https://doi.org/10.1038/s41401-019-0299-4.
Stäuble, CG, & Blobner, M. (2020). The Future Of Neuromuscular Blocking Agents. Current Opinion In Anaesthesiology. 33 (4): 490–498. https://doi.org/10.1097/ACO.0000000000000891.
Hristovska, AM, Duch, P., Allingstrup, M., & Afshari, A. (2017). Efficacy of sugammadex in reversing neuromuscular blockade in adults. The Cochrane database of systematic reviews . 2017; 8(8).
Takazawa, T., Mitsuhata, H., & Mertes, PM (2016). Sugammadex and rocuronium-induced anaphylaxis. Journal of anesthesia. 30 (2): 290–297. https://doi.org/10.1007/s00540-015-2105-x.
Huang, DT, & Papazian, L. Is Cisatracurium the Neuromuscular Blocking Agent of Choice in Acute Respiratory Distress Syndrome?. (2018). American journal of respiratory and critical care medicine. 197 (7): 849–850. https://doi.org/10.1164/rccm.201712-2610ED.
Jain, A., Wermuth , HR, Dua , A., Singh, K., & Maani, CV (2022). Rocuronium. In StatPearls. StatPearls Publishing.
Clar, DT, & Liu, M. (2022). Non-depolarizing Neuromuscular Blockers. In StatPearls. StatPearls Publishing.
Miyazaki, Y., Sunaga, H., Hobo, S., Miyano, K., & Uezono, S. (2018). Pancuronium Enhances Isoflurane Anesthesia of Cerebral Nicotinic Acetylcholine Receptors. Journal of anesthesia. 30 (4): 671–676. https://doi.org/10.1007/s00540-016-2178-1.
Ni, C., et al. (2020). Cisatracurium Stimulates Testosterone Synthesis in Rat Via Nicotinic Acetylcholine Receptor . Journal of cellular and molecular medicine. 24 (24) :14184–14194. https://doi.org/10.1111/jcmm.16029.
Fanelli, V., Morita, Y., Cappello, P., Ghazarian , M., Sugumar , B., Delsedime , L., Batt, J., Ranieri, V.M., Zhang, H., & Slutsky, AS (2016 ). Neuromuscular Blocking Agent Cisatracurium Attenuates Lung Injury by Inhibition of Nicotinic Acetylcholine Receptor-α1. Anesthesiology. 124 (1):132–140. https://doi.org/10.1097/ALN.0000000000000907.
Brinch, JHW, Söderström, CM, Gätke, MR, & Madsen, MV (2019). Reversal of mivacurium-induced neuromuscular blockade with a cholinesterase inhibitor: A systematic review. Acta Anaesthesiologica Scandinavica. 63 (5): 564–575. https://doi.org/10.1111/aas.13304.
Haerter, F., et al. (2019). Comparative Effectiveness of x-Drugs and Sugammadex to Reverse Non-depolarizing Neuromuscular-blocking Agents. Anesthesiology. 123 (6): 1337–1349. https://doi.org/10.1097/ALN.0000000000000868.
de Boer, HD, & Carlos, RV (2018). New Drug Developments for Neuromuscular Blockade and Reversal: Gantacurium. Current anesthesiology reports. 8 (2): 119–124. https://doi.org/10.1007/s40140-018-0262-9.
Kotake, Y., et al. (2013). Reversal with Sugammadex in the Absence of Monitoring did not Preclude Residual Neuromuscular Block. Anesthesia and analgesia. 117 (2): 345–351. https://doi.org/10.1213/ANE.0b013e3182999672.
Kim, YB, Sung, TY, & Yang, HS (2017). Factors affect the onset of action of non-depolarizing neuromuscular blocking agents. Korean journal of anesthesiology. 70 (5): 500–510. https://doi.org/10.4097/kjae.2017.70.5.500.