Algoritma K-Means Untuk Pengelompokan Bantuan Langsung Tunai (BLT)
Abstract
The problem of poverty is a problem that often occurs in various regions in Indonesia, officials in West Dawuan Village continue to overcome these problems with various government assistance, one of which is Direct Cash Assistance (BLT). Often times in West Dawuan Village, there are obstacles in the distribution of the Direct Cash Aid funds received by parties who do not meet the criteria, there are residents who receive BLT successively and policy-making errors have a negative impact on the use of aid, especially in West Dawuan Village, Karawang. Using data mining clustering techniques, it is possible to group prospective beneficiaries according to the criteria to overcome these problems. This study uses the K-Means algorithm to classify BLT recipients in Dawuan Barat Village. The evaluation results from the resulting K-Means clustering model were then evaluated by using the SSE (Sum of Square Error) test. From the resulting K-Means clustering model, recommendations for prospective BLT recipients will be known according to the applicable criteria. With the help of the elbow method, the value of k=6 is obtained as the optimal k value and the results of the SSE cluster 6 test produce the best value among other clusters, which is 24551994078884.86. As a recommendation for BLT recipients, it can be done based on the best results from the SSE evaluation, namely cluster 6
References
Agatha Olivia Victoria. (2022). No Title. ANTARA, 1. https://www.antaranews.com/berita/2647513/bps-jumlah-penduduk-miskin-turun-jadi-265-juta-per-september-2021
Brian Jenkins. (2018). Hans-On Phyton. In Hans-On Phyton (2nd ed., Vol. 2, p. 200). CreateSpace Independent Publishing Platform.
Buulolo, E. (2020). Data Mining Untuk Perguruan Tinggi. Deepublish Publisher.
Dewi, D. A. I. C., & Pramita, D. A. K. (2019). Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 9(3), 102–109. https://doi.org/10.31940/matrix.v9i3.1662
Dina Sunia, Kurniabudi, P. A. J. (2019). Penerapan Data Mining untuk Clustering Data Penduduk Miskin Menggunakan Algoritma K-Means. Jurnal Ilmiah Mahasiswa Teknik Informatika, Vol 1 No 2(2016), 121–134.
Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI
Nurahmawati, F. (2020). Implementasi Kebijakan Program Bantuan Langsung Tunai (BLT) Terhadap Warga Terdampak Covid-19 di Desa Cibadak. Pkm-P, 4(2), 166. https://doi.org/10.32832/pkm-p.v4i2.733
Refialy, L. P., Maitimu, H., & Pesulima, M. S. (2021). Perbaikan Kinerja Clustering K-Means pada Data Ekonomi Nelayan dengan Perhitungan Sum of Square Error (SSE) dan Optimasi nilai K cluster. Techno.Com, 20(2), 321–329. https://doi.org/10.33633/tc.v20i2.4572
Retno Tri Vulandari. (2017). DATA MINING Teori dan Aplikasi Rapir Miner (Cetakan 1). GAVA MEDIA.
Suhartini, S., & Yuliani, R. (2021). Penerapan Data Mining untuk Mengcluster Data Penduduk Miskin Menggunakan Algoritma K-Means di Dusun Bagik Endep Sukamulia Timur. Infotek : Jurnal Informatika Dan Teknologi, 4(1), 39–50. https://doi.org/10.29408/jit.v4i1.2986
Teguh Imam Rahayu, A. G. (2020). Implementasi pengunaan DD dalam pencegahan covid-19. 1(21), 144–166.
Wanto, Anjar, D. (2020). Data Mining : Algoritma dan Implementasi - Books. In T. Limbong (Ed.), Yayasan kita menulis (Cetakan 1). Yayasan Kita Menulis. https://books.google.co.id/books?id=AtcCEAAAQBAJ&dq=buku+data+mining+dan+teks+mining&lr=&hl=id&source=gbs_navlinks_s
Waworuntu, N. V., & Amin, M. F. (2018). Penerapan Metode K-Means Pemetaan Calon. Kumpilan Jurnal Ilmu Komputer (KLIK), 05(02), 190–200. http://klik.ulm.ac.id/index.php/klik/article/view/157 (05 Juni 2020)