Perbandingan Algoritma Backpropagation Neural Network dan Long Short-Term Memory dalam Memprediksi Harga Bitcoin

  • Felix Andreas Universitas Singaperbangsa Karawang
  • Mikhael Mikhael Universitas Singaperbangsa Karawang
  • Ultach Enri Universitas Singaperbangsa Karawang

Abstract

In actual practice, Bitcoin is the decentralized currency that allows two individuals to transact without third-party intervention. However, due to its high volatility, it has been such an attraction to investors to gain profit. But, that also mean that high volatility can also bring disadvantage if someone predicts the increase or decrease of the price of Bitcoin incorrectly. The technical analysis which is often used to predict Bitcoin prices has a weakness, that is specifically depends on the users of technical indicators. Therefore, it is necessary to use the Data Mining algorithm as an alternative solution to predict Bitcoin prices. In this paper, the implemented algorithms to predict Bitcoin prices are Long Short-Term Memory (LSTM) and Backpropagation Neural Network. The final results using T-Test showed there is no significant difference between LSTM and Backpropagation in predicting the data test with an average RMSE value of 661.580 and 1.812.503, respectively. However Backpropagation has the advantage to predict new data (outside of the dataset) with an average RMSE value of 629.545, while the average RMSE value of the LSTM is 2.818.248.

References

Dirgantara, H. (2022, Maret 25). Jumlah Investor Aset Kripto di Indonesia Sudah Tembus 12,4 Juta Per Februari 2022. kontan.co.id. diakses 12 april 2022, dari https://investasi.kontan.co.id/news/jumlah-investor-aset-kripto-di-indonesia-sudah-tembus-124-juta-per-februari-2022

Givari, M. R., Sulaeman, M. R., & Umaidah, Y. (2022). Perbandingan Algoritma SVM, Random Forest Dan XGBoost Untuk Penentuan Persetujuan Pengajuan Kredit. Jurnal Nuansa Informatika, 16(1), 141–149.

Halimi, I., & Kusuma, W. (2018). Prediksi Indeks Harga Saham Gabungan (IHSG) Menggunakan Algoritma Neural Network. Jurnal Edukasi Dan Penelitian Informatika, 4(1), 24–29.

Hastomo, W., Karno, A. S. B., Kalbuana, N., Nisfiani, E., & ETP, L. (2021). Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19. Jurnal Edukasi Dan Penelitian Informatika, 7(2), 133–140.

Karno, A. S. B., Hastomo, W., Arif, D., & Moreta, E. S. (2020). OPTIMASI PORTOFOLIO DAN PREDIKSI CRYPTOCURRENCY MENGGUNAKANDEEP LEARNING DALAM BAHASA PYTHON. Seminar Nasional Teknologi Informasi Dan Komunikasi STI&K, 4(1), 193–202.

Kusumadewi, S. (2003). Artificial Intelligence (Teknik dan Aplikasinya), Ed.2, Graha Ilmu, Yogyakarta.

Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. Wiley.

Livieris, I. E., Pintelas, E., Stavroyiannis, S., & Pintelas, P. (2020). Ensemble Deep learning models for forecasting cryptocurrency time-series. Algorithms, 13(5).

Maulana, R., & Kumalasari, D. (2019). ANALISIS DAN PERBANDINGAN ALGORITMA DATA MINING DALAM PREDIKSI HARGA SAHAM GGRM. Jurnal Informatika Kaputama (JIK), 3(1), 22–28.

Nakamoto, S. (n.d.). Bitcoin: A Peer-to-Peer Electronic Cash System. www.bitcoin.org

Santoso, A., & Hansun, S. (2019). Prediksi IHSG dengan Backpropagation Neural Network. Jurnal RESTI, 3(2), 313–318.

Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos, Solitons and Fractals, 140.

Published
2022-08-19
How to Cite
Andreas, F., Mikhael, M., & Enri, U. (2022). Perbandingan Algoritma Backpropagation Neural Network dan Long Short-Term Memory dalam Memprediksi Harga Bitcoin. Jurnal Ilmiah Wahana Pendidikan, 8(12), 547-558. https://doi.org/10.5281/zenodo.7009768